Forschungsbericht Nr. 97-15

Case Study: Manipulating &-OBDDs by Means
of Signatures

Christoph Meinel, Harald Sack
FB 1V - Informatik, Universitdat Trier
D-54286 Trier, Germany

emaili {meinel sack}@uni-trier.de

Electronic copies of technical reports are available: Printed copies:

Via FTP: URL ftp://ftp.informatik .uni-trier.de/pub/Users-Root/reports Trierer Forschungsberichte

Via WWW: URL http://www .informatik.uni-trier.de/Reports/Current.html Fachbereich IV -

Viaemail: Send a mail to ftpmail@ftp.informatik.uni-trier.de, subject Mathematik / Informatik
"HELP’, for detailed instructions Universitat Trier

D-54286 Trier

ISSN 0944-0488

Case Studyr Manipulating @-OBDDs by Means of Signatures

Christoph Meinel, Harald Sack
FB 1V - Informatik, Universitdat Trier
D-54286 Trier, Germany
emaili {meinel,sack}@uni-trier.de

Abstract

We present a case study concerning manipulation of §-OBDDs based on a probabilistic
equivalence test. Efficient Boolean function manipulation requires efficient algorithms
for Boolean synthesis as well as for testing the equivalence of two Boolean functions. Due
to the fact that @-OBDDs do not provide a canonical representation, the equivalence test
becomes an extensive operation. A recently introduced deterministic equivalence test
performs only in high polynomial degree execution time and, therefor is not qualified
for practical purposes. Hence, we tried to work with a probabilistic equivalence test
(with one-sided error probability) based on Boolean signatures. From our experimental
results we can conclude that the application of the probabilistic equivalence test is well
suited for working in the field of Computer Aided Design.

1 Introduction

Many problems in digital system design, combinatorial optimization, or mathematical logic
can be formulated in terms of Boolean functions. Thus, a concise representation which
simultaneously provides fast manipulation is very important for problems in form of Boolean
functions. Ordered Binary Decision Diagrams (OBDDs) provide a well known data structure
for efficient Boolean function manipulation and hence, are widely used in many fields. For
an overview see [MT97].

One drawback of OBDDs is that not every Boolean function of practical importance can
be represented efficiently. For example, the OBDD-representation of the multiplication or
the hidden weighted bit function (HWB) are of exponential size [Bry91]. Therefor, as an
extension of OBDDs, ©-OBDDs (Mod2-OBDDs) were introduced in [GM93b]. ©-OBDDs
are more, sometimes even exponentially more, space-efficient than OBDDs. ¢-OBDDs
preserve the OBDD property of efficient manipulation. Apply operation, quantification,
and composition have the same complexity as in the case of OBDDs. Even better, the
Boolean functions exclusive or (EXOR), the logical equivalence (EQU), and the negation
can be performed in constant time.

Any Boolean function with efficient OBDD-representation can be represented efficiently
by ¢-OBDDs, but the contrary does not hold. However, $-OBDDs do not provide a canon-
ical representation of Boolean functions. For canonical representations like OBDDs, in
practical applications a comparison whether two given OBDDs represent the same function
is done simply by comparing the value of the associated pointer variables. For noncanon-
ical representations, the test for equivalence is much more difficult. In Boolean synthesis
as a task of Boolean function manipulation with OBDD like data structures, the efficiency
depends crucially on the equivalence test. That is because, for OBDD synthesis operations

To be published at the 3rd International Workshop on Applications of the Reed-Muller Expansion in
Circuit Design (Reed Muller 97) Oxford, UK

require exponential time, if they are carried out without a cache which memorizes already
computed results. To look up already computed OBDDs in the cache, we always require
the execution of the equivalence test. For this reason it is very important to have a fast
equivalence test.

The recently discovered deterministic equivalence test based on a minimization algorithm
introduced in [Waa97] can easily be adapted to ¢-OBDDs, but it performs only in high
polynomial degree execution time. Hence, this equivalence test seems not to be suitable
for practical purposes. In [GM93b] a fast probabilistic equivalence test for ¢-OBDDs of
linear execution time has been proposed. This equivalence test is based on the probabilistic
equivalence check of [BCWS80]. If two ¢5-OBDDs represent the same Boolean function, the
probabilistic equivalence test will always give the correct answer. On the other hand, if two
G-OBDDs which represent different functions are compared, the equivalence test answers
with a certain error probability. Therefor, we decided to execute a case study working with
this fast probabilistic equivalence test to decide whether it can be used for practical work.

In order to optimize the $-OBDD representation of a given Boolean function, we tried to
perform reductions on the &-OBDD based on the probabilistic equivalence test. Synthesis of
a @-OBDD from a given circuit representation of a Boolean function is done with a variation
of the standard ITE algorithm. This modified ITE algorithm, denoted as I'TE-&, performs
an EXOR operation on two $-OBDDs by introducing a new §-node with the two ¢&-OBDDs
as successors. But for circuit descriptions not containing EXOR gates, respectively EQU
gates, we had to find a way to introduce @-nodes into the $-OBDD representation. In this
case we can use an apply algorithm based on the positive or negative Davio expansion of
the Boolean function to be computed.

Our results, however, had to be certified because even if we have only a very small error
probability when testing a single equivalence, the repeated application of the probabilistic
equivalence test amplifies the overall error. Thus, we checked the correctness of our syn-
thesized G-OBDDs by translating them into a circuit description and verifying these circuit
descriptions against the circuit specifications with a standard synthesis tool (SIS).

The paper is structured as followsi In Section 2, we recall some basic definitions concern-
ing &-OBDDs. In Section 3, we present the probabilistic equivalence test based on Boolean
signatures. Section 4 deals with reducing &-OBDDs and in Section 5, we introduce the
ITE-& algorithm. Section 6 concludes the paper with experimental results.

2 @-0OBDDs and Some Basic Facts

A &-OBDD P over a set X,, = {#1,...,2,} of Boolean variables is a directed acyclic
connected graph P = (V, F). V is the set of nodes, consisting of nonterminal nodes of
outdegree 2 and of terminal nodes with outdegree 0. There is a distinguished nontermi-
nal node, the source/root, which, as only node, has the indegree 0. To deal with Boolean
functions f 1 IB" — IB™, we consider multi rooted shared &-OBDDs by introducing multi-
ple roots into a single ©-OBDD, each root representing a subfunction of f=(fi,..., fm),
fi1IB" — IB.

The terminal nodes, the 0-sink and the I-sink, are labeled with the Boolean constants 0
and 1, respectively. The remaining nodes are either labeled with Boolean variables x; € X,,,
denoted as branching nodes, or with the binary Boolean function ¢ (EXOR), denoted as
@-nodes. In the following, let {(v) denote the label of the node v € V and size(P) the
number of nonterminal nodes of P.

I CV x V denotes the set of edges. The two edges starting from a branching node »
are labeled with 0 and 1. The 0(1)-successor of a node v is denoted by v0(vl). There is

a permutation o on the variable indices which defines an order @,(1) < @,(2) < ... <@,
on the set of input variables, If w is a successor of v in P labeled by I(v),{(w) € X,,, then
[(v) <l(w) according to o. On each path, every variable must occur at most once.

The function fp associated with the @¢-OBDD P is determined in the following wayi
For a given input assignment a=(ay,...,a,) € {0,1}", the Boolean values assigned to the
sinks extend to Boolean values associated with all nodes of P as followsi

e Let v0 and vl be the successors of v, carrying the Boolean values ¢, 6, € {0, 1}.

o If v is a branching node labeled with the Boolean variable z; (I(v) € X)), then v is
associated with 6.

o If v is a B-node labeled with the Boolean function & (I(v) =), then v is associated
with @(60H (51) = (60+61) mod 2,

fr(a) takes the value associated with the source of P. Thus, the value of a Boolean function
fp represented by the &-OBDD P can be computed in time O(size(P)).

Furthermore, we can also consider the use of complemented edges as introduced in
[MB88] to acquire a more compact representation.

1
P: Q 1 w2 wa | fp
; 0 0 0 |o
00 1 |0
{ 0 1 o0 |1
0 1 1 |1
> 1 0 0 |0
% ;9 1 0 1 |1
bl 1 1 0 |1
Al
1 1 1 |o

Figure 11 $-OBDD P and OBDD O, both computing fp

For illustrating the concept of &-OBDDs see Figure 1. Let IB3={{0,1}°—{0,1}} and let
the function fp €IBs be defined by the given truth table. Moreover, let 7 be the natural
order on the set of variables, i.e. m(¢)=t. For branching nodes, the dashed line always refers
to the edge labeled by 0. A dot on an edge denotes that it is complemented.

Since OBDDs are special cases of G-OBDDs (namely ¢&-OBDDs without @-nodes), for
each variable ordering each Boolean function can be represented by means of a §-OBDD.

Fact 11 [GM93b] Let © be an ordering on X,,. Fach Boolean function over X, can be
represented by means of a G&-OBDD that tests variables according to .

Fact 21 [GMO93b] The size of an optimal &-OBDD for a given Boolean function f is not
greater than the size of an optimal OBDD for f. Moreover, there exist Boolean functions
with small (low polynomial degree) &-OBDD representation whose OBDDs are of exponential
size.

Fact 2 is proven by an exampler The hidden weighted bit function HWB is defined
as followsi If wt(x) is the number of ones (the “weight”) in the input assignment z =
(z1,...,2,) € X, and if, for simplicity, zo denotes 0, then HWB is defined by HWB(z) =
Tot(r). 10 [Bry91] it has been proven that each OBDD representation of the HWB is of
exponential size, but its ©&-OBDD representation is of cubic size [GM96]i The equality
HBW(z) = @i, zx N Ep(X) where Ejp(2) equals one if x contains exactly k ones can be

verified easily. Since, for each variable ordering, x4 A £g(x) can be represented by an OBDD
of at most quadratic size, the above equality can be immediately transformed into a cubic
size -OBDD for HWB.

For Boolean function manipulation, an efficient algorithm is needed which performs the
application of a binary Boolean operation on two G-OBDDs.

Fact 31 [GM93a] Let R and Q) be two &-OBDDs of the variable ordering © and let * be a
binary Boolean operation. Then a ©-OBDD P w.r.t. the variable ordering © for fp= fr* fq
can be constructed in time O (size(R) - size(Q)). If € {®, =}, then the resulting &-OBDD
can be constructed in constant time by creating a new $-node and connecting it with R and

Q.

@-OBDDs do not provide a canonical representation of Boolean functions. Besides
binary synthesis, the equivalence test is one of the basic tasks of Boolean function manip-
ulation. Therefor, a feasible equivalence test for $-OBDDs is also necessary if we want to
use them for practical purposes.

3 Probabilistic Equivalence Test for £©-OBDDs

Similarly to @-OBDDs, we can consider 2-OBDDs for a basis €2 of binary Boolean functions
by allowing all so-called functional nodes labeled by an element of €2 [Mei89]. By introducing
functional nodes into the OBDD representation we lose canonicity. Hence, it becomes an
essential task to decide whether two representations denote the same function. According
to [GM93a], the equivalence test for Q-OBDDs, Qe {{V},{A}, {V,A}}is co-NP-complete.
The situation is different for Q = {§}. There, the determination of equivalence is within
co-R.

Recently, a deterministic equivalence test for a @-OBDD-like data structure was intro-
duced [Waa97] that can easily be adapted for our model. The main idea behind this equiv-
alence test is the followingi It is convenient to regard the space B, of Boolean functions
of n variables as an algebra over the two-element field Zg, i.e., as a 2"-dimensional vector
space with an additional multiplication operation. The product of two Boolean functions
corresponds to element-wise conjunction and the sum to element-wise EXOR. ¢-OBDDs,
representing Boolean functions, are corresponding to vectors in this vector space. An algo-
rithm is given which computes a ¢-OBDD-like data structure with a minimum number of
nodes for the given Boolean function as a linear combination of bases in the given vector
space according to a certain variable order. This minimization can be done by solving linear
equation systems using Gaussian elimination, and therefor needs execution time at most
cubic in the number of nodes.

We can use this minimization algorithm for an equivalence testi Let P, and P, be two
@-OBDDs representing the Boolean functions fp,, fp, € IB,. If we compute fp, & fp, and
minimize the resulting &-OBDD according to the given algorithm, we must obtain the 0-sink
if the two B&-OBDDs are equal.

During the process of Boolean synthesis, we need the equivalence test to determine
whether a computation has already been done or a node to be created does already exist.
This task is managed by looking up some cache data structures containing the already
computed results. The deterministic equivalence test mentioned above is too time expensive
to be executed each time we are doing a cache lookup. Therefor, we are in need of a fast
equivalence test.

The probabilistic equivalence test for 5-OBDDs proposed in [GM93a] depends on merely
linear many arithmetic operations. It is based on a probabilistic equivalence test for read-

once branching programs (BP1), originally introduced in [BCWS80]. Equivalence of two
G-OBDDs is determined by arithmetics on the ¢-OBDD in terms of a polynomial over
a finite field. More precisely, we assign the polynomial p, = ¢ to a variable 2 and for
each Boolean function F' represented by a ¢&-OBDD, we transform the Boolean Functions
-} and Fy A F; into the arithmetic expressions 1—pp and pg, - pr,, where pp represents
the polynomial assigned to F. Further, to represent &-OBDDs as polynomials, we need
PEVE, = PBy t PE, — P PE, and prigr, = pry + pr, — 2pp pr, to transform the binary
Boolean operations EXOR and OR.

Let GF(2™),meIN, m> (logn)+1, denote a Galois field with 2™ elements of character-
istic 2. If we consider the elements of GF'(2™) as bit vectors of length m, then addition can
be performed by bitwise EXOR.

Let P be a ¢-OBDD. With each node v of P we associate the polynomial p, 1
(GEFQ2mM)" — GF(2™)

0 (1) v is 0-sink(1-sink)
p'u(wll"'lwn): w'pvl(wll"'|wn)+(1_w)'pv0(w1|"'|wn) l(’U):£E€Xn
va(w1|---|wn)+pv1(w1|"'|wa) Z(U):@

The polynomial associated with the -OBDD P is the polynomial associated with the source
vo of P. Note that the degree of the evaluated polynomial is always less or equal n and
that the polynomial remains unchanged for different representations P of the same Boolean
function.

Now let P and ¢ be two &-OBDDs and ay,...,a, € GF(2™) are generated indepen-
dently and uniformly random. According to [GM93a], the following can be proveni

pplar, ... an) = pglay, ... an) if fp = fq and
Prob(pp(a1, ' "|aTb) :pQ(all . -'|an)) < % if fp ?é fQ-

Thus, if P and ¢ compute the same function, the algorithm always answers “yes”, otherwise
it answers “yes” with a probability smaller than 1/2. The values associated with the function
fp, computed by the &-OBDD P, are called Boolean signatures. Instead of GF/(2™), any
field Z, for a prime p > 2n can be chosen. As usual, the error probability can be arbitrarily
reduced by increasing m or simply by just using several signatures per node.

According to [BCWS80, Bra92], the probability of degeneracy in BDD synthesis based
on signatures, i.e., the signatures for two BDDs representing different Boolean functions
being equal, is at most]\;'—PVSS, where N is the number of nodes, V' the number of variables,
P the number of elements in the finite field, and S the number of used signatures. Using
this formula one gains a maximum probability of degeneracy of 5.05-10~7 when using an
array of three signatures over Z,, for p=23'—1 with a BDD of 10® Nodes depending on 100

Boolean variables.

4 Reductions on $-OBDDs

In general, ©-OBDDs can be reduced in the same manner as OBDDs. In a ¢&-OBDD a
branching node labeled by 2 € X,, is redundant if both of its edges point to the same
node. Such nodes can be replaced by reconnecting all incoming edges to their successor.
This reduction rule is called simple reduction or deletion rule. Identification of isomorphic
subgraphs forms the second reduction rule called algebraic reduction or merging rule (refer
to Figure 2).

,
! 1
g 1
J 1
:
;
;
;
d / @
; ,
4 r

Figure 21 Deletion rule and merging rule for branching nodes.

Moreover, in the case of G-OBDDs we need reduction rules for ¢-nodes. For a ¢-node v
deletion rule and merging rule are applied in the same way as for branching nodes, except
that for the deletion rule @-nodes with two equal successors are substituted by the 0-sink
(see Figure 3). We also have to consider the case that one successor of a @©-node is a terminal

o] & ® & ®

Figure 31 Deletion rule and merging rule for ©-nodes.

node. If the 0-sink is a successor of the ¢-node, then the @-node is replaced by its second
successor. On the other hand, if the I-sink is a successor of the @-node, then the ¢-node
is replaced by a complemented edge pointing to its second successor (refer to Figure 4).
Considering complemented edges we are able to extend the reduction rules further. Hence,

.

@ [o] () ()

h
|
L]

vr

Figure 41 Reduction rules for @-nodes connected with terminal nodes.

the deletion rule replaces each @-node v having successors which are the complement of each
other (ny=7;) by the I-sink. The merging rule reduces @-nodes v and w having isomorphic
subgraphs of different complementation parity ({u, v, } ={w, @;} or {w,v,}={wr, w,}) to
a single node v by using equivalence relations for complemented edges (see Figure 5).

Figure 51 Deletion rule and merging rule for &-nodes with complemented edges.

If we use complemented edges, we have to extend our considerations concerning the avoid-
ance of additional ambiguity to ensure a more efficient usage of the caches needed in synthesis
operations (see Section 5). Like with OBDDs, in @-OBDDs an edge leading from node v la-
beled by a Boolean variable @; € X, to the I-successor v1 must not be negated. Considering
a node w labeled by &, we state that only one of the two successors of w, which we denote
as wy, the left successor and w,, the right successor,may be negated. Hence, we define the
left successor wy always to be not negated. To maintain this rule, we use the equivalences
shown in Figure 6.

Figure 61 Fquivalences for @&-nodes and complemented edges.

5 The ITE-© Algorithm

The synthesis algorithm for ¢-OBDDs proposed in [GM96] shows that applying a binary
Boolean operation on two G-OBDDs requires at most quadratic time. In convenient OBDD
implementations, all Boolean operations are implemented by means of the I'TE operator
[BRB90].

Hence, we extend the standard ITE algorithm in the following way to the ITE-@ algo-
rithm. The I'TE-@ algorithm computes every Boolean operation except EXOR and EQU in
the same way as the standard I'TE algorithm. To perform logical EXOR of two ¢-OBDDs,
ie. ITE(f,9,7), we simply introduce a new @-node and connect it with the two &-OBDDs.
For the computation of the EQU of two @&-OBDDs, we take the complement computed by
the EXOR operation.

As usual, to speed up the performance of the ITE operation, we are using a computed
table, which is organized as a hash based cache, to store and recall the results of 1TE-
®(f,9,h). Before a new node is created, we always refer to a unique table organized as a
hash table to prevent the creation of already allocated nodes. In both, computed table and

unique table, every reference is made by application of the probabilistic equivalence test to
identify the underlying ¢-OBDDs. To avoid redundant entries in the computed table, we
transform the triple to a standard form by reordering it and checking the constraints for
complemented edges. Refer to Figure 7 for a brief description of the I'TE-& algorithm in
pseudocode.

function idte-®(f g,h result)
begin
transform_to_standard_triple(f,g h);
if terminal_case(f g h result)
then
return result;

else
begin
ry =ite-® (f|v=1,9lv=1,hlv=1);
ro =ite-® (f|v=0, glv=0, hlv=0);
if signature(r,)=signature(r;)

reorder_triple_acc_to_variable_order(f,g.h); then =
check_rules_for_complemented_edges(f,g,h); elsrzsu =

if dn_computed_table(f,g h, result)
then
return result;

result=new_node(label=v then=ry else=ro);
insert_in_computed_table(f,g h result);
end,)

if f=®)))
then find_or_add_in_unique_table(result);

result=new_node(label=@ then=g else=h); return result;

end.

Figure 71 Modified I'TE algorithm for &-OBDD synthesis.

Regular cofactors, i.e., cofactors of a function associated with a branching node v, are derived
by simply returning the 0-successor, respectively the I-successor of node v. Creating the
cofactors of a function associated with a @-node v according to a variable x; necessitates
the allocation of a new @-node connected to the cofactors of the left and right successor of
v. In this case we have to create new @-nodes for every @-node on a path between v and
the branching node vp labeled by the variable z; (see Figure 8).

flyms f\

Figure 81 Cofactor creation f|,—1 in &-OBDD P with l(sourcep)=6®.

6 Experimental Results

We applied our ¢-OBDD synthesis tool on some ISCAS85 [BF85] benchmark circuits. Be-
cause of the possible error in the execution of the equivalence test we had to determine that
the obtained @¢-OBDDs are correct. In order to do this, we transformed the synthesized
4-OBDD into a BLIF (Berkeley Logic Interchange Format) circuit description file, simply
by substituting each node labeled by « € X,, with an according multiplexer subcircuit and

all @-nodes with a description of the EXOR function. Then this circuit description file was
verified against the BLIE version of the circuit's specification file. This check was done by
the SIS standard synthesis tool [SSM192].

However, for the circuits ¢880 and c6288, the constructed ¢&-OBDD could not be verified
with SIS due to memory limitations. The ¢-OBDD for the 16th bit of the ¢6288 multiplier
consisting of more than 700.000 nodes was tested for correctness by comparing expected
result and actual result for all input assignments and was proven correct.

We started our experiments with appropriate variable orders obtained by heuristics.
Actually, we use fanin heuristics according to [MWBSV88], weight propagation heuristics
introduced by [MIY90], and, for comparison, also the original order in which the variables
occur in the circuit description.

At first, circuits containing EXOR gates were under consideration, namely ¢432 and
¢499. With weight propagation heuristic the ratio between @-OBDD-size and OBDD-size
was about 0.3 for ¢432 and ¢499 (see Table 1).

For the circuits not containing EXOR gates nor EQU gates, the I'TE-& algorithm creates
only an OBDD. Therefor, we have to introduce ¢-nodes into the &-OBDD synthesis process.
One possible solution is to consider alternative function decompositions that introduce new

@-nodes into the &-OBDDi

e positive Davio expansioni f = fly=0 @ «(fle=1 B flu=0)
e negative Davio expansiont f = f|,=1 ® Z(f|s=1 D fls=0)

If we want to perform a binary Boolean operation * on two @-OBDDs according to the
positive Davio expansion, we introduce two new é-nodesi The first G-node is connected with
the ¢-OBDDs computed by applying * to the cofactors. The second @-node is connected
with the &-OBDDs computed by applying * to the negative cofactors and the product of
the variable z and the other new @-nodel

J*9=(flo=o*gle=0) © 2 (([le=1 * g|le=1) © (fle=0 * g|e=0)).

Up to now, we use either positive Davio expansion, negative Davio expansion, or Boole-
Shannon expansion for G-OBDD creation. Thus, the §-OBDD depends on a single expan-
sion type. We are planning to use a heuristic that decides during the synthesis step what
expansion to take for each synthesis step.

In Table 1, in the column heuristics, fanin heuristics is denoted as fanin, weight prop-
agation as wp, and index means original order. The column decormnp denotes the functional
decomposition we use. For all tables, Boole-Shannon expansion associated to the ITFE oper-
ator is denoted as ite, and positive and negative Davio expansion are denoted as pDF and
nDE. The column A-ratio stands for the quotient of &-OBDD-size and OBDD-size.

Table 1 presents those results for which we obtained the best ratio between OBDD-size
and @-OBDD-size. In Table 2 - 4, all obtained results are listed depending on the heuristics
used to create the variable order. For Table 2, fanin heuristics is used, for Table 3, weight
propagation heuristics, and for Table 4, the original order of the circuit description file.
A bar in a cell of a table denotes that the computation exceeded the memory limitations,
which were chosen rather low to allow a larger number of experiments within the intended
timeframe.

For ¢6288, we could only synthesize partial circuits up to the 16th bit of the multipli-
cation. The &-OBDD-size was about 10% greater than the corresponding OBDD-size. We
introduced EQU-gates into the circuit description of 6288 by substituting complexes con-
sisting of four NOR~gates, representing a logical equivalence [Bry88]. But, the synthesized

G-OBDDs still were always greater than their OBDD counterparts. A possible explanation
of this result is that the used order is not well adapted for $-OBDDs.

As a synopsis of the case study we can state that efficient manipulation of &-OBDDs
by means of signatures is possible, because the error probability according to our verified
results seems to be quite minor to effect §-OBDDs up to a reasonable number of nodes.
Actually, three signatures of 32 bit size were sufficient for all experiments we performed,
where up to 1 million intermediate nodes were created for a single ¢-OBDD. Up to now,
we are not able to use dynamic reordering for ¢-OBDDs because it is not implemented
yvet. We are going to implement variable reordering, which can be performed as for OBDDs.
The only difference is to avoid the swap of adjacent variables with &-nodes in between. We
can solve this problem by moving the according ¢-nodes up or down the computation path
until the variables to be swapped are directly adjacent. Hence, the next step will be to
implement dynamic reordering to draw a direct comparison of the G&-OBDD representation
and the OBDD representation.

circuit OBDD-size | $-OBDD-size | A-ratio | heuristics | decomp
c432 89338 33475 0.37 wp ITE
c499 45865 10240 0.23 fanin ITE
880 30548 20438 0.71 wp pDE
cl355 119201 13299 0.11 wp nDE
¢1908 36007 16333 0.45 index nDE
¢5315 40306 7798 0.19 wp nDE
c6288.6123gat 686691 747860 1.09 fanin ITE

Table 11 Comparison of OBDD-size and ®-0OBDD-size for synthests of some
1SCAS85 benchmark circuits (best results).

circuit OBDD-size P-OBDD-size

ITE pDE | nDE
c432 29864 34011 81923 | 86515
c499 45865 10240 11609 | 11609
880 8025 (*) 73369 | 64792

1355 45865 *) - -
¢1908 11569 (*) 27183 | 17734
¢5315 32842 (*) 31489 | 33106

c6288.6123gat 686691 747860 - -

Table 21 Comparison of OBDD-size and ®-0OBDD-size for variable orders

created by fanin heuristic.

circuit OBDD-size P-OBDD-size
ITE | pDE nDE
c432 89338 33457 | 72125 | 105266
c499 36862 9493 13025 12995
880 30548 (*) 20438 20635
cl355 119201 (*) 13480 13299
¢1908 39373 (*) 20770 28148
¢5315 40306 (*) 13244 7798
c6288.6123gat - - - -

Table 31 Comparison of OBDD-size and ®-0OBDD-size for variable orders
created by weight propagation heuristic.

*@-OBDD-size equals OBDD-size for circuits not containing EXOR(EQU)-gates if Boole-Shannon expan-
sion and I'TE-@ algorithm is used.

10

circuit OBDD-size P-OBDD-size
ITE pDE nDE
c432 1733 2114 4745 6266
c499 45922 12800 13703 13698
880 346660 (*) 284187 | 399071
cl355 45922 (*) 14197 14392
¢1908 36007 (*) 17347 16333
5315 - (*) | 66376 | 73749
c6288.6123gat - - - -

Table 41 Comparison of OBDD-size and ®-0OBDD-size for variable orders

chosen as variables occur in circuit description.

References

[BCWS0]

[BEFS5]

[Bra92]

[BRB9O]

[Bry88]

[Bry91]

[GM93a]

[GM93b]

[GMO6]

Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equivalence of
Free Boolean Graphs Can be Decided Probabilistically in Polynomial Time.
Information Processing Letters, 10(2)180-82, 1980.

F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in FORTRAN. In Proc. [EEFE Int. Symp. on
Clire. Syst. (ISCAS), pages 695-698, 1985.

Karl S. Brace. Ordered Binary Decision Diagrams for Optimization in Sym-
bolic Switch-Level Analysis of MOS Circuits. PhD thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1992.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient Implemen-
tation of a BDD Package. In 27th ACM/IEEE Design Automation Conference,
pages 40-45, 1990.

David Bryan. The ISCAS '85 Benchmark Circuits and Netlist Format. Tech-
nical report, MCNC - Microelectronic Center of North Carolina, 1988.

Randal E. Bryant. On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer Multiplica-
tion. [EEE Transactions on Computers, 40(2)1205-213, 1991.

Jordan Gergov and Christoph Meinel. Frontiers of Feasible and Probabilistic
Feasible Boolean Manipulation with Branching Programs. In Proc. of the 10th
annual Symposium on Theoretical Aspects of Computer Science, volume 665
of LNCS, pages 576-585. Springer, 1993.

Jordan Gergov and Christoph Meinel. Mod2-OBDDsi A Generalization of
OBDDs and EXOR-Sum-of-Products. In Proc. IFIP WG 10.5 Workshop on
the Application of the Reed-Muller Fapansion in Circuit Design, TR WSI-93-
2, W. Schickard-Institut fiir Informatik, Universitat Tibingen, pages 170-175,
1993.

Jordan Gergov and Christoph Meinel. Mod2-OBDDsi A Data Structure that
Generalizes EXOR-Sum-of-Products and Ordered Binary Decision Diagrams.
In Formal Methods in Systemn Design, volume 8, pages 273-282. Kluwer Aca-
demic Publishers, 1996.

11

[MBSS]

[Meig9)]

[MIY90]

[IMT97]

[MWBSVS8S]

[SSM192]

[Waa97]

Jean-Christophe Madre and Jean-Paul Billon. Proving Circuit Correctness
Using Formal Comparison Between Expected and Extracted Behaviour. In
Proc. of the 25th ACM/IEEE Design Automation Conference, pages 308-313,
1988.

Christoph Meinel. Modified Branching Programs and T hewr Computational
Power, volume 370 of LNCS. Springer Verlag, Heidelberg, 1989.

Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared Binary Decision
Diagrams with Attributed Edges for Efficient Boolean Function Manipulation.
In Proc. of the 27th ACM/IEEE Design Automation Conference, pages 52—57,
1990.

Christoph Meinel and Thorsten Theobald. Geordnete bindre Entscheidungs-
graphen und ihre Bedeutung im rechnergestiitzten Entwurf hochintegrierter
Schaltkreise. In Informatik °97 - Jahresbericht der Gesellschaft fir Informatik,
Aachen, 1997. Springer.

S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli. Logic
Verification Using Binary Desicion Diagrams in a Logic Synthesis Environ-
ment. In Proc. of the 25th Design Automation Conference, pages 268-271,
1988.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis and

Optimization. In Proc. of the Int. Conf. on Computer Design, pages 328-333,
Cambridge, MA, 1992.

Stephan Waack. On the Descriptive and Algorithmic Power of Parity Ordered
Binary Decision Diagrams. In Proc. of the 14th Symposium on Theoretical
Aspects of Computer Science, volume 1200 of LNCS. Springer, 1997.

12

