published In Proceedlngs of the Internatlonal Workshop on Loglc Synthesls (IWLS' 98),

7-10 June 1988, Tahoe Clty, CA, USA, pp. 19-24

B-OBDDs - a BDD Structure for Probabilistic Verification

Christoph Meinel, Harald Sack
FB 1V - Informatik, Universitat Trier
D-54286 Trier, Germany

emalli {melnel sack}@unl-trler.de

Abstract

Ordered Binary Decision Diagrams (OBDDs) have al-
ready proved usefull in the verification of combina-
tional and sequential circuits. Due to limitaions of
the descriptive power of OBDDs several more gen-
eral models of Binary Decision Diagrams have been
studied. In this paper, $-OBDDs - also known as
Mod20BDDs - in respect to their ability to serve as
a tool for combinational verification are considered.
Besides the application of &-OBDDs, the more gen-
eral problem of how to exploit the inherent potential
of &-OBDDs more efficiently is addressed.

1 Introduction

A major problem in the computer aided design of dig-
ital circuits (VLSI-CAD)is to choose a suitable rep-
resentation of the circuit functionality for the com-
puter's internal use. A concise representation which
simultaneously provides fast manipulation is very im-
portant for problems in form of Boolean functions.
During the last years, Ordered Binary Decision Dia-
grams (OBDDs) have proved to be well qualified for
this purpose. Although OBDDs were introduced in
the context of CAD applications, they are now used in
many different fields like e.g. the solution of combina-
torial problems or design and verification of communi-
cation protocols. For an overview see [Bry92, MT97].

Applications based on OBDDs are limited, since
the descriptive power of OBDDs is limited. There-
fore, not every Boolean function of practical impor-
tance can be represented efficiently. For example,
the OBDD-representations of the multiplication or
the hidden weighted bit function (HWB) are of ex-
ponential size [Bry91|. Therefore, more general BDD
modells have been studied. In this paper we address
®-OBDDs (also known as Mod2-OBDDs), introduced
as an extension of OBDDs |[GM96]. ®-OBDDs are
more, sometimes even exponentially more, space-
efficient than OBDDs. -OBDDs preserve the OBDD
property of being an efficient data structure for
Boolean function manipulationi Important opera-
tions as apply, quantification, and composition have

the same complexity as in the case of OBDDs. Even
better, the Boolean functions exclusive or (EXOR),
logical equivalence (EQU), and negation can be per-
formed in constant time.

However, &-OBDDs do not provide a canonical
representation of Boolean functions. For canonical
representations like OBDDs, testing the equivalence
reduces to a simple pointer comparison in the com-
puter. For non canonical representations, the equiv-
alence test is much more difficult. Doing symbolic
simulation of digital circuits with OBDD-like data
structures, the efficiency crucially depends on a fast
equivalence test. More precisely, synthesis of OBDDs
becomes an exponential operation if there is no cache
available to look up - rather than to recompute - the
result of single synthesis operations that already oc-
curred at a previous step of the computation. Looking
up this cache requires that the equivalence of the OB-
DDs of the current and the cached operation is easy
to check.

The fastest known deterministic equivalence test
for &-OBDDs based on a minimization algorithm in-
troduced in [Waa97 requires time cubic in the num-
ber of nodes. Hence, it seems not to be suitable for
practical purposes. In |[GM96|, a fast probabilistic
equivalence test for -OBDDs has been proposed that
requires only a number of arithmetic operations that
is linear in the number of variables.

In this paper we show how to work with $-OBDDs
in symbolic simulation of digital circuits. In sym-
bolic simulation of digital circuits the potential of
the $-OBDDs often can not be exploited, because no
EXOR(EQU) gates appear. To avoid this problem,
we propose methods on how to integrate $-nodes into
the data structure.

The paper is structured as followsi In Sec-
tion 2, we remind some basic definitions concerning
@®-OBDDs. In Section 3, we present the probabilistic
equivalence test based on Boolean signatures. Sec-
tion 4 deals with $-OBDD synthesis. In Section 5
we show how to integrate new $-nodes into the BDD
datastructure and Section 6 concludes the paper with
experimental results.

2 $-O0BDDs and Some Basic
Facts

A ®&-OBDD P overaset X, ={xy,..., z,} of Boolean
variables is a directed acyclic connected graph P =
(V. E). V is the set of nodes, consisting of nonter-
minal nodes with out-degree 2 and of terminal nodes
with out-degree 0. There is a distinguished nonter-
minal node, the root, which, as only node, has the
in-degree 0. (To deal with Boolean functions f11B” —
IB”*, we consider mult: rooted shared &-OBDDs by in-
troducing multiple roots into a single &-OBDD, each
root representing a subfunction of f = (fi,..., fm),
fi1B® —1B.) The two terminal nodes with no outgo-
ing arcs are labelled by the Boolean constants 0 and 1.
The remaining nodes are either labelled with Boolean
variables x; € X,,, denoted as branching nodes, or with
the binary Boolean function & (EXOR), denoted as
@-nodes. On each path, every variable must occur
at most once. TIn the following, let /(v) denote the
label of the node v € V' and size(P) the number of
nonterminal nodes of P.

ECVxV denotes the set of edges. The two edges
starting in a branching node v are labelled with 0 and
1. The 0(1)-successor of node v is denoted by v0(v1).
There i1s a permutation o on the variable indices which
defines an order x| <@g|z) <...< Zy|n| on the set
of input variables. If w is a successor of v in P with
[(v),l(w) € Xy, then [(v) <l(w) according to o.

The function fp associated with the $-OBDD P
is determined in the following way1 For a given input
assignment a=(ay, ..., an) € {0, 1}", the Boolean val-
ues assigned to the leaves extend to Boolean values
associated with all nodes of P as followsi

e Let v0 and vl be the successors of v, carrying
the Boolean values dg, d; € {0, 1}.

e If v is a branching node labelled with z; € X,,
then v is associated with dg,.

o If v is a ®-node, then v is associated with

@(50, 51) = (50 +51) mod 2.

fp(a) takes the value associated with the root of
P. Thus, the value of a Boolean function fp rep-
resented by the &-OBDD P can be computed in time
O(size(P)). Furthermore, we can also consider the
use of complemented edges as introduced in [MB8§|
to achieve an even more compact representation.

For an illustration of the concept of $-OBDDs see
Figure 1. Let fp1{0,1}>— {0, 1} be defined by the
given truth table. Moreover, let m be the natural or-
der on the set of variables, i.e., 7(7) =¢. For branch-
ing nodes, the dashed line always represents the edge
labelled by 0. A dot on an edge denotes that it is
complemented.

P: Q T1T2T3 fr

000 0

001 0

1 010 1

. 011 1

> 100 0

)\ 101 1

W 110 1

! 111 0
Figure 11 $-OBDD P and OBDD O with comple-

mented edges, both computing fp

Since OBDDs are special cases of $-OBDDs
(namely ®&-OBDDs without é-nodes), for each vari-
able order every Boolean function can be represented
by means of a $-OBDD. Therefore, we may con-
clude that the size of an optimal $-OBDD for a
given Boolean function f is not greater than the size
of an optimal OBDD for f. Moreover, there exist
Boolean functions with small (low polynomial degree)
@®-OBDD representation whose OBDDs are of expo-
nential size, like the hidden weighted bit function.

For Boolean function manipulation we are in need
of an efficient algorithm performing the application
of a binary Boolean operator on two &-OBDDs. As
shown in |[GM93] the result of the application of a
generic boolean operator ® on two &-OBDDs R and
Q@ of the variable ordering 7 can be constructed in
time O(size(R) size(Q)). Even better, if @ € {®, =},
then the resulting &-OBDD can be constructed in
constant time.

But, &-OBDDs do not provide a canonical repre-
sentation of Boolean functions.

3 Probabilistic Equivalence
Test for $-OBDDs

Similarly to &-OBDDs, we can consider 2-OBDDs
for a basis € of binary Boolean functions by allowing
all so-called functional nodes labelled by an element
of @ [Mei89]. By introducing functional nodes into
the OBDD representation, we lose canonicity. Hence,
it becomes an essential task to decide whether two
representations denote the same function. The equiv-
alence test for all Q-OBDDs, Qe {{V}, {A}, {V,A}}is
co-NP-complete. For this reason the approach pro-
posed by |[SDG93 containing AND-nodes as well as
@-nodes fails. The situation is different for Q ={®},
where the determination of equivalence is within co-
R (see [GM93|).

Recently, a deterministic equivalence test for a
®-OBDD-like data structure was introduced [Waa97|
that can be adapted to our model. This equivalence
test 1s based on a minimization algorithm that re-
quires the solution of a system of linear equations.

Doing this by Gaussian elimination, the runtime is
cubic in the number of nodes and therefore too time
expensive for practical applications.

The probabilistic equivalence test for $-OBDDs
proposed in |GM93] needs only linearly many arith-
metic operations in the number of variables. Tt is
based on a probabilistic equivalence test for read-
once branching programs (BP1), originally intro-
duced in |[BCW80]. Equivalence of two ®-OBDDs
is determined by an algebraic transformation of the
@®-OBDDs in terms of polynomials over a finite field.
More precisely, we assign the polynomial p, = = to
a variable x and for each Boolean function F' rep-
resented by a &-OBDD, we transform the Boolean
Functions —=F and F; A Fy into the arithmetic ex-
pressions 1 —pp and pr, - pp,, Where pp represents
the polynomial assigned to F'. By exploiting the law
of DeMorgan and idempotence we derive pp,vp, =
pF1+pF2_pF1pF2 and PrioF, = pF1+pF2 - 2pF1pF2 for
the binary Boolean operations OR and EXOR. For
a more detailed description of the application of this
algebraization technique see JJBFA92].

Let GF(2™), meN, m> (logn)+1, denote a Ga-
lois field with 27 elements of characteristic 2. Note
that using GF(2™) simplifies the polynomial for the
EXOR operation. If we consider the elements of
G F(2™) as bit vectors of length m, addition can be
performed by bitwise EXOR. Multiplication has to
be carried out according to the rules concerning the
polynomial ring over GF(2™).

With each node v of a &-OBDD P we associate the
polynomial p, 1 (GF(2™))* — GF(2™) in the follow-
ing wayl

e if v is a leaf node 0/(1), then p, =0 (1),

e if v is a branching node, I(v) =2 € X,,, then
PUZI'PU1+(1—17)'P1/0.

e and if v is a ®-node, [(v) =, then
Pv =Pvo+Pul.

The polynomial associated with the &-OBDD P is
the polynomial associated with the root vg of P. Note
that the polynomial remains unchanged for different
representations P of the same Boolean function.
Now, let P and @ be two $-OBDDs and let
ai, ... an € GF(2™) be generated independently and
uniformly random. The equivalence of two polyno-
mials in symbolic representation can be tested by a
random algorithm in the following way |[GM93]

o if fp = fQ, then

pP(ah'"lan) :pQ(all"'lan)l
o if fp 75 fQ, then
Prob(pp(ar, ... an) =pg(ar, ... an)) < %

Thus, if P and @ compute the same function, the al-
gorithm always answers “yes”, otherwise it answers

“yes” with a probability smaller than 1/2. The bit
string representing the polynomial associated with
the function fp computed by the -OBDD P is called
Boolean signature. The error probability is depend-
ing on the number of elements in GF(2™). Therefore,
we are able to reduce it by enlarging m and by using
several signatures per node with different instances of
ay, ..., an € GF(2™). In [BCW80, Bra92] an estima-
tion of the probability of degeneracy in BDD synthesis
based on signatures is given, i.e., the probability that
during the synthesis of a &-OBDD P the signatures
for two nodes representing different Boolean functions
are computed to be equal. For an example, if we are
using s different signatures per node the error proba-
bility is at most

size(P)? - n*

error < 2-|G’F|5

where size(P) denotes the number of nodes of the
®-OBDD P, n the number of variables, and |G F| the
number of elements in the finite field. For our ex-
periments in section 5 we are working with up to 3
different signatures of 32 bit length per node. Thus,
we were sufficient to perform all computations with-
out error. If we have, for example, a &-OBDD with
107 Nodes depending on 100 Variables and if we are
working with 3 different signatures each of 32 bit
length, we have to face an error probability of less

than 6.31 - 10710,

4 Synthesis of $-OBDDs

We will assume that the reader is familiar with stan-
dard OBDD synthesis algorithms. The conventional
apply algorithm for ¢-OBDDs proposed in |[GM96]
shows that applying a binary Boolean operation on
two ®-OBDDs requires at most quadratic time. But
in convenient OBDD implementations, all Boolean
operations are implemented by means of the ite op-
erator [BRBO0] which is defined as a ternary Boolean
function for the inputs F, G, H by “If F' then G else
H"orite(F,G,H)=F -G+ F - H and can be evalu-
ated by recursive application of the Boole-/Shannon-
expansioni

f = xf|1'=1 +Ef|x=0-

We decided to adapt the ite-algorithm for -OBDDsi
In combinational synthesis, the description of a digital
circuit is read and each gate of the circuit will be sim-
ulated by a $-OBDD. Thus, for all gates except for
those which perform an EXOR(EQU)-operation we
apply the regular ite-algorithm. Gates implementing
an EXOR(EQU)-operation are simply simulated by
@-nodes connected to the &-OBDDs simulating the
gate's inputs.

The second step of adaption involves the creation
of cofactors fl; =q,d€{0,1} for &-OBDDsI Regular
cofactors, i.e., cofactors of a function associated with
a branching node v, are derived by simply returning
the 0-successor, respectively the I-successor, of node
v. Creating the cofactors of a function associated with
a d-node v according to a variable x; necessitates the
allocation of a new @-node connected to the cofactors
of the left and right successor of v. In this case we
have to create new @-nodes for every $-node on a
path between v and the branching node vg labelled
by the variable z; (see Figure 2).

fl, f

\J

Figure 21 Cofactor creation fl|,,=1 in &-OBDD P
with l(rootp) =.

To speed up the performance of the ite operation,
we are using a computed table, which is organized as
a hash based cache, to store and reuse the results of
ite. Before a new node is created, we always look up a
unique table organized as a hash table to prevent the
creation of already allocated nodes. In both, com-
puted table and unique table, every reference is made
by application of the probabilistic equivalence test to
identify the underlying &-OBDDs. To avoid redun-
dant entries in the computed table, we transform the
triple (F, G, H) to a standard form by reordering it
and checking the constraints for complemented edges.

However, with the modified ite algorithm the
@®-OBDD that we create for a circuit description
which contains neither EXOR gates nor EQU gates
is isomorphic to an OBDD created by conventional
ite-algorithm.

5 Introduction of ©-nodes into
the BDD datastructure

In the case that the circuit under consideration con-
tains no EXOR(EQU) gate, we have to introduce
®-nodes to take advantage of the potential of the
@®-OBDDs. We have investigated two different ap-
proachesi

1. Using alternative function decompositions that
include $-node generation, or

2. substituting linearly dependend functions by $-
node combinations.

The conventional ite-algorithm is based on the
Boole/Shannon function decomposition. As an al-
ternative, we can use the positive (pDE) or negative

Davio expansion (nDE);

pDE! f
nDEI f =

f|1‘=0 S5 x(f|1'=1 S5 f|1‘=0)
f|1‘=1 @E(.ﬂr:l S5 f|1‘=0)-

By applying a binary Boolean operator ® to two
Boolean functions f, g according to the positive Davio
expansion, we introduce two new $-nodes for each re-
cursive apply stepi

f ® g = (f|1’=0 ®g|1‘=0)®

x((.ﬂx:l ®g|x=1) S5 (f|1'=0 ®g|1'=0))'

But, the ongoing creation of &-nodes by random may
increase the total number of nodes beyond the size
of conventional OBDDs for the same function. This
is the case, if none of the reduction rules can be ap-
plied. We can try to avoid this effect by using the al-
ternative function decompositions pDE and nDE not
always but only sometimes. But the problem remains
that the created ®-nodes may not be positioned at an
appropriate place in the diagram and therefore, will
be of no benefit.

@-nodes should be introduced in a more sophis-
ticated way: It is convenient to regard the space B,
of Boolean functions of n variables as an algebra over
the two-element field Z,, i.e. a 2"-dimensional vec-
tor space with an additional multiplication operation.
The product of f, ¢ € B, which corresponds to coordi-
natewise conjunction is denoted by f¢ and the sum,
which correspondes to coordinatewise EXOR, by f+y.
In this context, the variable x; is taken to represent
the projection from {0, 1}™ to the ith coordinate and
T; as the according complement.

Now let P be a &-OBDD representing fp. The
Boolean function fp can be regarded as the Boolean
function assigned to the top node v of the -OBDD
P and 1s defined by induction on i =n+1,n,...,0,
where ¢ denotes the level to which v belongsi

(i) i=n+11 vis leaf, f,=1.

(ii) v is node at level i, 1 <i < ni let f! be the
function computed its I-successor and fO the
function computed its 0-successor, then f, =
il [y + Ty 1y

If the function under consideration may be expressed
as a linear combination of already computed func-
tions, f =73, fi, we are able to represent this func-
tion as a tree of $-nodes connected to the H-OBDDs

representing the functions f;.
Unfortunately it is very expensive to include a

test into the practical implementation that proves,
whether an already computed $-OBDD is part of a
linear combination of already computed functions.

Therefore, we decided in a first try only to consider
binary linear combinations to investigate their effect
on the &-OBDDs.

For the implementation we use the symmetry
property of the EXOR function. The signature of
a new branching node v to be created is known in
advance, sig(f,) = = - sig(fu,) + T - sig(fo,). Now
the unique table has to be tested, whether it con-
tains two nodes p, ¢ having the appropriate signa-
tures to construct the linear combination we look
for, sig(f,) = sig(f,) + sig(f»). To find the linear
combination we test for every node p in the unique
table whether there exists an appropriate node o.
Because summation is done by EXOR, we can test
sig(fo) = sig(f,) +sig(f,). The unique table is orga-
nized as a hashtable and therefore, the existence of o
can be testet in time O(1). The overall time required
to find a binary linear combination for a new node to
be created computes to O(size(P)).

If we have to consider linear combinations con-
sisting out of more than two functions, the proposed
method is not suitable for practical purposes.

6 Experimental Results

For our experiments we used an Intel PPro200 Linux
workstation, limiting memory-size to 200MB. A sym-
bolic simulation procedure based on our $-OBDD-
package was used together with a subset of the smaller
LGSynth91 Benchmarks.

Because $-OBDD- based verification of circuits is
probabilistic, we had to check our results for correct-
ness. This was done by translating the constructed
@-OBDD into a multiplexer circuit containing EXOR
gates coded in BLIF (Berkeley Logic Interchange For-
mat). Then the translated &-OBDD was verified
against the BLIF version of the circuit's specification
file from the LGSynth91 Benchmarks. This check was
done by the standard synthesis and verification tool
VIS |Gro96].

Because our $-OBDD-package is already under
construction and dynamic reordering is not yet imple-
mented, we have to work with a static variable order.
In our experiments we simply used the variable order
given by the circuit descriptions.

In Table 1, in the column circuit contains the name
of the circuit netlist to be simulated. As a reference,
column two contains the final size for the OBDD rep-
resenting the circuit. The remaining columns contain
the final sizes of the resulting $-OBDDs computed by
the ite-algorithm and by positive or negative Davio
expansion,

Alltogether, we required up to 3 distinct signa-
tures of 32 Bit length per node, resulting in a maxi-
mum of additional 96 bit of memory per node over the
conventional OBDD node size to simulate all circuits

correctly. Of course the additional memory required
for signatures lessens memory efficiency for &-OBDDs
compared to OBDDs.

The $-OBDD-sizes given for the ite-algorithm dif-
fer only from OBDD-sizes when EXOR(EQU) gates
are included in the circuit description. The exclu-
sive application of nDE/pDE sometimes leads to good
results, but, in many cases too much $-nodes seem
to be created in the wrong places so that the size
is greater than the comparable OBDD-size. But, in
many cases G-OBDD-size is better than OBDD-size
and therefore, we think that &-OBDDs are a promis-
ing approach for working in the field of probabilis-
tic verification. For example, the OBDD for circuit
Cbh315 could not be created because of memory lim-
itations, but the -OBDDs depending on pDE/nDE
succeeded.

In Table 2, we have tried to limit the use of
pDE/nDE-expansions during the simulation process.
In the first column the circuit name is given. The sec-
ond column denotes the OBDD-size for comparison.
Columns 4 to 7 show ®-OBDD-sizes in relation to
the application of pDE/nDE-expansion. The header
50% denotes that pDE/nDE-expansion was applied
in 50% of all apply-steps while the ite-algorithm was
used in the remaining apply-steps during a single run.
For each circuit under consideration we performed 10
simulation runs with a given percentage of pDE/nDE
usage. During a single run the consideration whether
to use pDE/nDE or ite was chosen by random with
the given percentage. One purpose of this experiment,
was to show the influence of the positioning of &-
nodes in the &-OBDD on its size. The other purpose
was to show the influence of the number of ®-nodes
in a $-OBDD on its size. In row 1 we placed the
minimum number of achieved nodes, row 2 contains
the average number of nodes out of 10 random runs,
and row 3 contains the maximum number of nodes.

Not in every case the average &-OBDD-size is less
than OBDD-size. The difference of the maximum and
the minimum sizes shows the impact of the placement
of ®-nodes on the &-OBDD-size. This confirmes us
that we should concentrate our work on a better &-
node placement.

s1196 seems to be a circuit that does not profit
very much from the use of ®-nodes. Therefore, the
less ®-nodes are used, the smaller is the size of the
®-OBDDs. For s967 and s967¢ the situation is differ-
ent. The more ®-nodes are used in the diagram, the
less is the overall size.

We left out a table with experiments concerning
additional @-nodes created by identifying linear com-
binations, because we could only achieve minor im-
provements with our proposed method. Identifying
only binary linear combinations is not sufficient. We
have to think of other methods where all possible lin-

ear combinations can be recognized.

In both tables we have only listed the sizes of

our obtained results and not the runtime, because we
are not able to compare our experimental &-OBDD
package to sophisticated OBDD packages, which are
highly optimized for runtime.

For a better comparison between OBDD and

@®-OBDD performance we are currently

imple-

menting dynamic variable reordering techniques for
®-0OBDDs, because they are commonly used in prac-
tical OBDD applications.

circuit OBDD $-0OBDD-size
ite nDE pDE
c432 1733 1733 4745 6266
c499 45922 12800 13703 13698
c499.reencoded 789 789 812 812
c880 346660 346660 284187 399071
cl355 45922 45922 14197 14392
c1908 36007 36007 39126 17824
c5315 >200MB >200MB 66376 73749
cordle 157 45 87 87
count 234 234 543 294
example2 469 469 605 644
frg2 6471 6471 7606 5049
12 335 335 861 317
k2 28336 28336 7736 6054
pcler8 139 139 122 223
s208.1 1033 1033 186 158
s1494 1016 1016 1486 1378
s820 2651 2651 563 822
s832 2651 2651 565 822
s635¢ 656 656 1746 728
s967 1732 1732 1084 1281
s967¢c 1723 1723 1084 1281
x3 2670 2670 2391 2503
%130 121 150 240 240
Table 11 Comparlson of OBDD-slze and &-OBDD-slze
circuit OBDD $»-0OBDD-size
50% 20% 10% 5%
s1196 2294 min 2657 2279 2335 2252
avg 2795 2543 2420 2373
max 2830 2772 2528 2545
s967 1732 min 1483 1567 1533 1672
avg 1637 1704 1731 1748
max 1689 1842 1868 1804
s967¢c 1723 min 1483 1622 1546 1360
avg 1592 1749 1753 1735
max 1689 1806 1830 1803

Table 21 Influence of placement of &-nodes on &-OBDD-slze

References

|IBCW80] Manuel Blum, Ashok K. Chandra, and Mark N.

|Brag2]

[BRB9|

IBryo1]

Wegman. Equlvalence of Free Boolean Graphs Can
be Declded Probabllistically In Polynomlal TIme.
Information Processing Letters, 10(2)180-82, 1980.

Karl S. Brace. Ordered Binary Decision Diagrams
for Optimization in Symbolic Switch-Level Analy-
sis of MOS Circuits. PhD thesls, Carnegle Mellon
Unlverslty, Plttsburgh, Pennsylvanla, 1992.

Karl S. Brace, Rlchard .. Rudell, and Randal E.
Bryant. Efficlent Implementation of a BDD Pack-
age. In 27th ACM/IEEE Design Automation Con-
ference, pages 40—45, 1990.

Randal E. Bryant. On the Complexlty of VLSI

Implementatlons and Graph Representatlons of

IBry92|

[GMo3|

[GMos|

|Gro96]

PPBFA92|

[MBss]

[Melg9]

[MTo7]

ISDGY3|

|[Waa97]

Boolean Functlons with Appllcation to Integer Mul-
tipllcatlon. TEEE Transactions on Computers,
40(2)|2057213, 1991.

Randal E. Bryant. Symbollc Boolean Manlpula-
tlon with Ordered Blnary Declslon Dlagrams. ACM
Computing Surveys, 24(3)1293-318, 1992.

Jordan Gergov and Chrlstoph Melnel. Frontlers of
Feaslble and Probabllistlc Feaslble Boolean Manlpu-
latlon wlth Branching Programs. In Proc. of the 10th
annual Symposium on Theoretical Aspects of Com-
puter Science, volume 665 of LNCS, pages 576-585.
Springer, 1993.

Jordan Gergov and Chrlstoph Melnel. Mod2-
OBDDsi A Data Structure that Generallzes EXOR-
Sum-of-Products and Ordered Blnary Declslon Dla-
grams. In Formal Methods in System Design, vol-
ume 8, pages 273—282. Kluwer Academlc Publishers,
1996.

The VIS Group. VISi A system for Verlficatlon
and Synthesls. In Proc. of the 8th Int. Conference
on Computer Aided Verification, number 1102 In
Lecture Notes In Computer Sclence, pages 428—432.
Springer, 1996.

J. Jaln, J. Bltner, D. S. Fussel, and J. Abraham.
Probabllistlc Verlficatlon of Boolean Functlons. In
Formal Methods in System Design, volume 1, pages
63—-117, 1992.

Jean-Chrlstophe Madre and Jean-Paul Blllon. Prov-
Ing Clrcult Correctness Uslng Formal Comparlson
Between Expected and Extracted Behavlour. In
Proc. of the 25th ACM/IEEE Design Automation
Conference, pages 308-313, 1988.

Chrlstoph Melnel. Modified Branching Programs
and Their Computational Power, volume 370 of
LNCS. Springer Verlag, Heldelberg, 1989.

Chrlstoph Melnel and Thorsten Theobald. Geord-
nete blndre Entscheldungsgraphen und Ihre Bedeu-
tung Im rechnergestiitzten Entwurf hochIntegrlerter
Schaltkrelse. In Informatik '97 - Jahresbericht der
Gesellschaft fir Informatik, Aachen, 1997. Springer.

Amella Shen, Shrinlvas Devadas, and Abhljlt Gosh.
Probabllistlc Constructlon and Manlpulatlon of Free
Boolean Dlagrams. In Proc. of the IEEFE Int. Conf.
on Computer Aided Design, pages 544549, 1993.

Stephan Waack. On the Descrlptlve and Algorlthmlc
Power of Parlty Ordered Blnary Declslon Dlagrams.
In Proc. of the 14th Symposium on Theoretical As-
pects of Computer Science, volume 1200 of LNCS.
Springer, 1997.

