to be published In

Proc. of 5th Int. Workshop on Applicatlons of the Reed-Muller Expanslon In Clrcult Deslgn (Reed-Muller 2001),

Starkvllle, Misslsslppl, USA, 10-11 August 2001, pp. 51-56.

Improving XOR-Node Placement for @&-OBDDs

Christoph Meinel, Harald Sack
FB IV - Informatik, Universitit Trier
D-5/286 Trier, Germany
{meinel,sack} Quni-trier.de

Abstract

Ordered Binary Decision Diagrams (OBDDs) have
already proved useful in the process of electronic de-
sign automation. Due to limitations of the descriptive
power of OBDDs more general models of Binary De-
cision Diagrams have been studied. In this paper, ®-
OBDDs as a true extension of the OBDD data struc-
ture are addressed. One important factor for the repre-
sentation size of ®-OBDDs is determined by the num-
ber and the position of the introduced ®-nodes. Based
on a simple greedy strategy that switches between dif-
ferent function decompositions, it is shown how to in-
troduce ©-nodes during ®-OBDD synthesis just at the
right place. The efficiency of the approach is proven by
symbolic simulation of standard benchmarks.

1. Introduction

A major problem in the computer aided design of dig-
ital circuits is the choice of a suitable representation
of the circuit functionality for the computer’s internal
use. A concise representation, which simultaneously
provides the possibility of fast manipulation is very
important for all problems given in terms of switch-
ing functions. During the last decade, Ordered Binary
Decision Diagrams (OBDDs) have proved to be well
qualified for this purpose (for an overview see [13]).

But, the descriptive power of OBDDs is limited,
due to their property of being a canonical represen-
tation for Boolean functions. On the one hand, this
important quality is responsible for the nice algorith-
mic properties of OBDDs. But, on the other hand,
the OBDD representation for most Boolean functions
must be of exponential size w.r.t. the number of in-
put variables, and not every Boolean function of prac-
tical importance can be represented efficiently. E.g.,
the OBDD-representations of the multiplication or the
hidden weighted bit function are always of exponential
OBDD-size [4] independent of the chosen order of the
input variables. For this reason, generalizations of the
OBDD data structure have been studied.

In this paper we address &-OBDDs (also known

as Mod2-OBDDs), a true extension of OBDDs [6]. ®-
OBDDs are more, sometimes even exponentially more,
space-efficient than OBDDs are. They preserve the
algorithmic properties of OBDDs: important opera-
tions as apply, quantification, and composition have
the same complexity as in the case of OBDDs. Even
better, the Boolean functions ezclusive or (XOR) and
logical equivalence (EQU) can be performed in con-
stant time.

However, &-OBDDs do not provide a canonical
representation of Boolean functions and therefore,
equivalence can only be tested fast, if probabilistic
techniques are applied [6]. A deterministic equivalence
test requires time O(|P|?) [16], with | P| denoting the
number of nodes of the -OBDD P, and thus, it is
way too slow for any application in practice.

The representation size of ®-OBDDs does not only
depend on the chosen variable order as in the case of
OBDDs, but it also depends on number and position
of ®-nodes. To make use of the full potential of &-
OBDDs, also the number and the positions of the ®-
nodes is rather important [12].

In this paper we introduce a heuristic for deciding,
where @®-nodes should be positioned during &-OBDD
synthesis. The introduction of new 9-nodes can be
achieved by employing alternative function decompo-
sitions that are depending on the XOR-operation, as,
e.g. the positive (negative) Davio expansion [14, 15].
For deciding, when to apply the alternative decompo-
sition, a threshold value is fixed before each synthesis
step. Only, if the result of the regular synthesis algo-
rithm exceeds the given threshold value in size, the
alternative decomposition is applied and new ®-nodes
can be introduced.

For giving proof about the efficiency of this simple
heuristic, it is applied to symbolic simulation of a set
of standard benchmarks [9].

The paper is structured as follows: In Section 2,
we recall basic definitions concerning &-OBDDs. Sec-
tion 3 covers the synthesis algorithm for ¢&-OBDDs
and recalls the alternative function decompositions.
Section 4 introduces our heuristic for smart @&-node
placement. Section 5 concludes with a discussion of

achieved experimental results.

2. ®-0OBDDs - an Overview

Definition of the Data Structure

A ®-OBDD P over a set X,, = {z1,...,z,} of
Boolean variables is a directed acyclic connected graph
P = (V,E). V is the set of nodes, consisting of non-
terminal nodes with out-degree 2, and of terminal
nodes with out-degree 0. There is a distinguished non-
terminal node, the root, which, as only node, has the
in-degree 0. The two terminal nodes with no outgoing
arcs are labeled with the Boolean constants 0 and 1.
The remaining nodes are either labeled with Boolean
variables x; € X,, (branching nodes), or with the bi-
nary Boolean operator XOR, (@®-nodes). On each path,
every variable must occur at most once. In the follow-
ing, let I(v) denote the label of the node v € V and
|P| the number of non terminal nodes of P.

E C V x V denotes the set of edges. The two
edges starting in a branching node v are labeled with
0 and 1. The 0(1)-successor of node v is denoted by
vo(v1). There is a permutation 7, which defines an or-
der z(1) < Tr(2) < ... < Tr(n) on theset of input vari-
ables. If w is a successor of v in P with [(v),l(w) € X,,,
then I(v) < I(w) according to m must hold.

Note that since the @-operation is symmetric, the
outgoing edges of @-nodes do not have to be labeled
separately. The function fp associated with the -
OBDD P is determined in the following way: For a
given input assignment a = (ay,...,a,) € {0,1}", the
Boolean values assigned to the leaf nodes are extended
to all other nodes of P as follows:

e Let vy and v; be the successors of v, carrying the
Boolean values dg, 0, €{0,1}.

e If v is a branching node, I(v) =x; € X,,, then v is
associated with dg; .

e If v is a @®-node, then v is associated with
@(50,61):(504-51) mod 2.

The function fp(a) computes to the value associated
with the source of P.

To achieve a more compact representation, we
may furthermore consider the use of complemented
edges [1, 10]. ®-OBDDs are also a generalization of
Kronecker Functional Decision Diagrams (KFDDs)
or pseudo Kronecker Functional Decision Diagrams
(pKFDDs), but, they provide a more compact repre-
sentation than KFDDs or pKFDDs do [6].

®-OBDDs do not provide a canonical represen-
tation of Boolean functions, i.e. there might be sev-
eral different representations Py, .. .Pf, k € IN for the
same Boolean function f. Thus, testing the equiva-
lence of two ©&-OBDDs becomes a rather difficult and

important task.

Probabilistic Equivalence Test

Since a deterministic equivalence test for @-OBDDs
requires runtime O(|P|?) [16], for practical applica-
tions we have to choose a faster method. A proba-
bilistic equivalence test for -OBDDs as proposed in
[5] requires only linearly many arithmetic operations
in the number of variables. It is based on a proba-
bilistic equivalence test for read-once branching pro-
grams (BP1), originally introduced in [2] and further
refined in [8]. Equivalence of two ©&-OBDDs is deter-
mined probabilistically, after an algebraic transforma-
tion of the -OBDDs in terms of polynomials over a
finite field. For a more detailed description of this al-
gorithm see [12].

Reduction Rules for -OBDDs

The reduction rules that are already known for OB-
DDs and, if exhaustively applied, guarantee a canon-
ical representation for OBDDs, have to be extended
for -OBDDs. Here, these reduction rules serve only
for a reduction in size, but they are not able to pro-
vide canonicity for &-OBDDs. In addition to the reg-
ular reduction rules for OBDDs that can be applied
to the branching nodes of a $-OBDD, reductions for
@-nodes have to be considered according to the node’s
functionality[12].

3. Synthesis of &-OBDDs

For the synthesis of ®-OBDDs, the already known
ITE-algorithm [3] that is applied for OBDDs can easily
be extended.

To connect two Boolean functions f and g given
in terms of OBDDs with an arbitrary Boolean opera-
tion ® the Boole-/Shannon decomposition (BS) w.r.t.
variable z; is applied:

fog=uxi(f z:) +Ti(f 77)-

fz: denotes the positive cofactor of the Boolean func-
tion f, where the input variable z; is substituted with
the constant x; = 1. fz denotes the negative cofactor
of f, respectively. The composition of the cofactors
can be computed recursively. For efficiency reasons all
Boolean operations are mapped to a single general op-
eration, which is able to express all Boolean opera-
tions, the so called If-Then-Else operator (ITE) [3].
ITE(z,y,z) is a three parameter function computing
if z, then y, else z

xi®g z_i®g

ITE(z,y,2)=z-y+T-z

For computing the synthesis of functions f, g, h repre-
sented as OBDDs, ITE is called recursively w.r.t. the

top variable z; of the involved OBDDs.

ITE(f,g,h) = (2i, ITE(f|s;59aish

ITE(f|z, glzr R

-Ti)a
7))

The recursion stops, if the first argument is constant,
if the second and the third arguments are constant, or
if the second and the third arguments are equal.

For ®-OBDDs, as an extension for computing f@®g
or f = ¢, a new &-node will be created and connected
to f and g, where f = g = f @ g. In all other cases,
the regular ITE-algorithm is applied with an adapted
cofactor creation algorithm for ®&-OBDDs, where, for
the computation of the cofactor f,, of a function f as-
sociated with a ®-node vy according to a variable z;,
in some cases, the allocation of a new ®-node vy, is re-
quired that is connected to the cofactors of the left and
right successor of vy [12]. The extended ITE-algorithm
for #-OBDDs is denoted as ITE-@-algorithm.

But, for symbolic simulation, if the circuit under
consideration does not contain any XOR(EQU) gate,
the ITE-®-algorithm would just create only an OBDD
instead on a @-OBDD. To benefit from the potential of
@-0OBDDs, somehow, @-nodes have to be introduced
into the data structure. This can be achieved by em-
ploying alternative function decompositions based on
the application of XOR, as e.g., the positive or nega-
tive Davio expansion (pDE/nDE), also referred to as
Reed-Muller expansion [14, 15]. There, the XOR op-
erator can directly be mapped to a ®-node.

pDE: f = f #)

w_i@xi(fzi@f
2 OTi(fla; ® f

The synthesis algorithm for @®-OBDDs based on
pDE-/nDE-decomposition is denoted as APPLY-®-
algorithm.

4. A Heuristic for ®-Node Placement

As shown in [12], not only the chosen variable or-
der, but also the number and the position of the in-
troduced @-nodes determines heavily the size of ®-
OBDDs.

As an indicator, whether the introduction of a $-
node at a specific place in a @-OBDD might be useful
or not, we consider the satisfaction of the following as-
sumption: The introduction of a ®-node is useful, if it
results in a §-OBDD of smaller size. Now, ®-nodes can
be positioned randomly into the already constructed
@-0OBDD and we decide, whether to keep them or not
according to their effect on the @&-OBDD size. But,
this approach requires the construction of the com-
plete &-OBDD first, before we have the possibility to
improve its size. In consequence, we might construct

Inputi ®-OBDD Py, P,, and operator ®
Outputi ®-OBDD P,.s, representing res = f ® g

local_greedy_synthesis (P, P, ®) {
res-ite = ITE-®(Pr, Py, ®);
if (size(res-ite) > threshold) {
res-alt = APPLY-® (P, P, ®);
if (res-alt < res-ite) {
res = res-alt;
delete res-ite;
} else {
res = res-ite;
delete res-alt;
}
}

return(res) ;

}

Figure 1: Heuristic for ®-OBDD Node Placement.

only a part of the -OBDD, introduce a satisfactory
number of ®-nodes, and afterwards, continue with its
construction.

By following this concept, we end up in a dy-
namic approach, which in each construction step of
the ®-OBDD compares its size with and without in-
troduced @-node. In symbolic simulation of a com-
binatorial design this means that for each single
gate G, we construct the ®-OBDD Py representing
the function fg of G. First, we are using the ITE-
algorithm and construct Py_;., and additionally em-
ploy either pDE(nDE)-APPLY-®-algorithm, resulting
in Pf—nDE (Pf—pDE)- Next, we compare the two ®-
OBDD sizes and decide, which &-OBDD to keep.
If |Proite|l > |Pr-npp| (|[Pr—ppEl), then we keep
Pf—nDE (Pf—pDE') and vice versa.

Thus, locally we always try to make use of the
smallest possible &-OBDD. But, of course this is only a
local minimum. Another disadvantage is that for each
synthesis step, we have always to construct both ver-
sions of the &-OBDD with the two synthesis proce-
dures resulting in a significant runtime overhead. To
increase the efficiency of the approach, we limit the
construction of the alternative @-OBDDs to the case,
only when the regular ITE-algorithm computes a &-
OBDD of a size that is passing a certain fixed thresh-
old. Thus, the additional construction of ®-OBDDs is
limited to the cases, when an alternative representa-
tion can be of a major advantage. For an outline of
this locally greedy algorithm see Fig. 1.

An important factor for this heuristic is of course

the proper choice of the threshold value. For our exper-
iments, we have chosen from the following possibilities:

e Set the threshold value to the maximum size of
the two operands multiplied by a constant ¢, thus
t = c-max(|Py/, |P,)) (MAX).

e Set the threshold value to the sum of the sizes
of the two operands multiplied by a constant c,
thus t = ¢- (|P¢| + |P,|) (ADD).

5. Experimental Results and Conclusion

For showing the efficiency of the heuristic, we have
chosen the symbolic simulation of a subset of the
LGSynth’93 [9] benchmarks. All experiments are com-
puted on an Intel Pentium IIT 500 MHz based Linux
system. Memory size is limited to 200 MB and com-
putation time to 2 CPU hours. Circuits that are re-
sulting in OBDDs with less than 100 nodes or that are
exceeding the given resource limitations are excluded.
The variable order for all circuits was kept fixed for
showing the effect of dynamic @-node placement and
reflects the order of the inputs given with the circuit
description. For the probabilistic equivalence test it
would have been sufficient to limit the number of sig-
natures, i.e. the number of independent probabilistic
equivalence tests, used for identifying ©-OBDDs to
n = 2, but for reasons of security n = 3 was chosen.

In Table 2 the results of these experiments are put
together. For different constant factors 0.6 < ¢ < 2.0
we have listed the overall size achieved for all bench-
marks for the methods denoted as MAX, with ap-
plication of nDE/pDE, and as ADD, as referred in
the list above. Additionally we have also tried to re-
verse the decision criteria for the heuristic, i.e. we
use nDE/pDE as default function decomposition and
only in the case, when the given threshold value is ex-
ceeded, we switch to the ITE-® algorithm with the
regular Boole/Shannon-decomposition. For this strat-
egy (further denoted as pDE-first/nDE-first), where
much more ®-nodes are created, the achieved overall
sizes are worse compared to the original approach and
only the results for the best choice of the threshold
parameter ¢ = 1.0 is listed for that case. This fact
confirms the results achieved in [12] that a small num-
ber of @-nodes placed at well chosen positions inside
the ®-OBDD provides the best overall effect in the av-
erage. For a reference in Table 1 the overall sizes for
OBDDs and for exclusive application of pDE and nDE
are also listed. The values given in percentages are al-
ways referring to the OBDD size, which is denoted as
100%. For ADD we have only listed the achieved sizes
for nDE, because for pDE the results are only slightly

[OBDD-size [@-OBDD size |
[OBDD % | PDE__ % | nDE % |
| 4.468.873 100 | 3.261.714 73 | 4.4687.023 104.9 |

Table 1: Reference Table for OBDDs and @&-OBDDs
with pDE/nDE.

different. For a complete overview of the achieved re-
sults for the single benchmark circuits and MAX-nDE
see Table 3.

By comparing the overall achieved size, the first
thing to state is that the exclusive application of pDE
results in 27% gain in size, compared to a 5% loss for
nDE, if related to the original OBDD size. By apply-
ing the locally greedy heuristic with different constant
parameter 0.6 < ¢ < 2.0, we can see that the size is
minimal for choosing the parameter ¢ &~ 1.0. There, we
are able to achieve an up to 33% win for the overall
size, which is better compared to the exclusive appli-
cation of nDE or pDE. In their general behavior the
two approaches MAX and ADD produce only slight
differences in size.

For circuits that benefit from the introduction of ®-
nodes, the exclusive application of nDE/pDE is often
better than the proposed heuristics. But, for circuits
that don’t benefit from the introduction of @&-nodes,
the heuristic is often much better than the exclusive
application of pDE/nDE. For the circuit mult16a, e.g.
the heuristic is always producing a smaller result com-
pared to the OBDD size or the exclusive application
of nDE/pDE. But, on the other hand, for cm150a, the
heuristic is not able to reproduce a result of similar
quality as the exclusive application of pDE/nDE. For
all methods and all parameters the achieved &-OBDD
size is approximately of the size of the OBDD or even
better.

Thus, in general our heuristic is able to keep the
benefits of both decompositions, BS and nDE/pDE.
For the heuristic the runtime increases in the average
of about 10%-15% in comparison to the average run-
time for standard ®-OBDD synthesis. But, considering
the general reduction in size, spending this additional
amount of time is worth while.

The achieved results could be further improved by
changing the positions of the already introduced &-
nodes. Exchanging a branching node with an adjacent
@-node effects the ®-OBDD only locally and thus, can
be computed rather fast [7, 11]. Based on this tech-
nique, in combination with the proposed algorithm,
new heuristics can be developed for further -OBDD

minimization.

$-OBDD Size

|
E—ttetuD

% | MAX (nDE) % | ADD % |
0.6 3.634.456 81.3 3.216.892 72.0 3.214.424 719
0.7 3.633.394 81.3 3.215.694 72.0 3.212.698 71.9
0.8 3.469.411 77.6 3.212,683 71.9 3.218.253 72.0
1.0 3.213.905 71.9 2.997.931 67.1 | 3.008.490 67.3
1.2 3.000.038 67.1 2.999.501 67.2 3.009.105 67.3
1.5 3.000.179 67.1 3.009.641 67.3 3.011.906 67.4
2.0 3.013.619 67.4 3.015.341 67.5 3.016.222 67.5
[¢ [MAX (pDE-first) % | MAX (nDE-first) %] ADD %

[10T 4.029.754 90.2 | 4.202.453 940 | 4.208246 94.2 |

Table 2: Heuristic for ®-Node Placement - Overall Results.

Automation Conference

(Anaheim, CA), 1988, 205-

References

[1]
2]

[10]

S. B. Akers, Binary Decision Diagrams, in IEEE
Trans. on Computers, vol. ¢-27, no. 6, 1978, 509-516.

M. Blum, A. K. Chandra, M N. Wegman, Equivalence
of Free Boolean Graphs can be decided Probabilisti-
cally in Polynomial Time, in Information Processing
letters 10, No. 2, 1980, 80-82.

K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient Im-
plementation of a BDD Package, in Proc. of the 27th
ACM/IEEE Design Automation Conf., 1990, 40-45.

R. E. Bryant, On the Complexity of VLSI Implemen-
tations and Graph Representations of Boolean Func-
tions with Applications to Integer Multiplication, in
IEEE Trans. on Computers 40 Vol. 2, 1991, 205-213.

J. Gergov, Ch. Meinel, Frontiers of Feasible and Prob-
abilistic Feasible Boolean Manipulation with Branch-
ing Programs, in Proc. 10th Annual Symp. on The-
oretical Aspects of Computer Science, 665 of LNCS,
Springer, 1993, 576-585.

J. Gergov, C. Meinel, Mod2-OBDDs: A Data Struc-
ture that generalizes EXOR-sum-of-products and Or-
dered Binary Decision Diagrams, in Formal Methods
in System Design 8, Kluwer, 1996, 273-282.

A. Hett, R. Drechsler, B. Becker, Reordering Based
Synthesis, in Proc. of the 8rd Int. Workshop on Appli-
cations of the Reed-Muller Erpansion in Circuit De-
sign (RM’97), Oxford, UK, 1997, 13-22.

J. Jain, M. Abadir, J. Bitner, D. S. Fussell, J. A. Abra-
ham, IBDDs: An Efficient Functional Representation
for Digital Designs, in Proc of the European Confer-
ence on Design Automation (1992), 440-446.

LGSynth93 Benchmarks:
http://www.cbl.ncsu.edu/CBL_Docs/lgs91.html.
J.-C. Madre, J.-P. Billon, Proving Circuit Correctness

using Formal Comparison between Expected and Ex-
tracted Behaviour, in Proc. 25th ACM/IEEE Design

[11]

[12]

[13]

[14]

[15]

[16]

210.

C. Meinel, H. Sack, Algorithmic Considerations of &-
OBDD Reordering, in Proc. of the 4th International
Workshop on Applications of the Reed-Muller Exzpan-
sion in Circuit Design (Victoria, BC, Canada), 1999,
197-184.

C. Meinel, H. Sack, Mod20BDDs - a BDD Structure
for Probabilistic Verification, in Electronic Notes in
Theoretical Computer Science, vol.22, 2000.

Ch. Meinel, T. Theobald, Algorithms and Data Struc-
tures in VLSI Design: OBDD - Foundations and Ap-
plications, Springer, Heidelberg, 1998.

D. E. Muller, Application of Boolean Algebra to
Switching Circuit Design and Error Detection, in IRE
Trans. on Electronic Computing EC-3, 1954, 6-12.

L. S. Reed, A Class of Multiple Error-Correcting
Codes and their Decoding Scheme, in IRE Trans. on
Information Theory 4, 1954, 38-42.

S. Waack, On the Descriptive and Algorithmic Power
of Parity Ordered Binary Decision Diagrams, in Proc.
14th Symp. on Theoretical Aspects of Computer Sci-
ence, 1200 of LNCS, Springer, 1997.

®-OBDD Size

[Threshold Factor ¢
Circuit OBDD nDE | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 | 2.0
sbc 3715 4598 3757 3755 3792 3785 3775 3767
s967 1732 1073 1683 1683 1655 1642 1631 1640
820 2651 552 1642 1642 1638 1634 2117 2651
s713 1352 3554 1433 1433 1408 1386 1366 1355
s641 1352 3550 1423 1423 1398 1376 1360 1355
s635 656 1746 798 793 660 660 659 655
8526 232 371 269 267 259 246 229 231
s510 19076 636 9738 9738 9742 9740 9713 9924
s499 336 640 570 570 337 337 337 356
s444 226 390 246 246 235 232 225 225
s420 262227 732 262334 262334 262311 262245 262227 262227
$386 281 295 273 255 262 260 271 280
83271 3365 6437 4175 3865 3541 3498 3403 3369
$208 1033 186 1054 1054 1049 1049 1033 1033
s1512 18896 10941 18763 18762 18746 18727 18690 18729
s1494 1016 1378 1287 1287 1073 1078 1070 1015
51488 1016 1316 1238 1200 1030 1033 1023 1015
$1423 98454 134008 99836 98531 98462 98460 98415 98519
s1269 48176 39922 50769 49966 49072 49068 48221 48211
s1196 2294 3844 2341 2341 2353 2341 2291 2263
rot 166674 266795 161506 163788 166825 166757 166705 166700
mult16a 360442 655125 163839 163839 163838 163838 163838 163838
mm9b 848081 658964 264856 264856 264856 264856 264838 264838
mm9a 735768 533707 220374 220374 220374 220374 220356 220356
comp 458698 859988 544543 544543 544541 544539 544549 544539
mmda 675 1439 680 683 671 671 674 674
dsip 13921 9675 7722 13082 7717 7715 13923 13920
x3 2760 2369 2625 2495 2429 2428 2762 2761
x1 1297 2948 1358 1336 1331 1329 1307 1298
vg2 1044 2071 1120 1107 1050 1045 1042 1042
vda 4345 1954 4342 4048 4214 4293 4437 4344
too_large 7096 14507 7097 7097 7091 7090 7095 7095
term1 580 1161 590 586 584 584 579 579
pair 67685 108998 68085 68085 68006 68007 67983 68012
my-adder 327677 589831 196614 196613 196613 196613 196608 196608
mux 131071 217 131072 131072 131072 131072 131072 131070
k2 28336 5986 27474 27460 26361 27518 28137 28335
i9 2278 8754 3751 2277 2277 2277 2277 2277
i8 4366 14750 5208 4466 4433 4385 4365 4365
i7 505 1000 633 504 632 578 504 504
i5 312 763 523 460 523 451 329 317
i4 421 1095 430 430 430 430 428 420
i2 335 317 336 336 334 334 334 334
frg2 6471 5031 6235 6326 6348 6344 6354 6465
frgl 204 383 208 206 206 204 203 203
example2 469 644 457 473 456 456 454 454
count 234 294 226 235 226 226 227 225
cml50a 131071 220 131072 131072 131072 131072 131070 131070
bw6x6 830 3535 1733 1732 1714 1705 1693 1675
b9 178 318 204 190 198 196 182 179
apex7 1660 1221 1736 1569 1570 1556 1536 1659
apexl 28336 8901 38460 37389 26238 26314 28324 28337
alud 1182 2141 1491 1641 1269 1265 1253 1243
alu32r 189266 18629 185397 185395 185394 185380 185361 188583
alu32 12194 959 8161 8161 8303 8686 10709 12193
alu2 231 420 297 240 237 234 232 232
adsb32r 528 897 698 688 688 687 685 623
adderl6 327812 606303 458850 458850 262310 262308 262293 262293
C499 45922 13699 7093 7093 7029 7029 7029 7029
C432 1733 4913 1342 1342 1470 1736 1732 1732
C1908 36007 37800 41792 40971 35869 36013 36009 36007
C1355 45922 14162 47515 45921 45921 45921 45921 45921
bigkey 6170 7970 5518 5518 6188 6188 6176 6172
b 4.468.873 4.687.023 3.216.892 3.215.694 2.997.931 2.999.501 3.009.641 3.015.341
H 100% ‘ 104.9% H 72.0% ‘ 72.0% ‘ 67.1% ‘ 67.2% ‘ 67.3% ‘ 67.5%

Table 3: Heuristic for ®-Node Placement — (MAX/nDE) — Single Circuits.

