
IPFS in the Fast Lane: Accelerating Record Storage
with Optimistic Provide

Dennis Trautwein∗†, Yiluo Wei‡, Yiannis Psaras†, Moritz Schubotz§, Ignacio Castro¶, Bela Gipp∗, Gareth Tyson‡¶
∗University of Göttingen, †Protocol Labs Inc., ‡Hong Kong University of Science & Technology (GZ),
§FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, ¶Queen Mary University of London

Abstract—The centralization of web services has raised con-
cerns about critical single points of failure, such as content
hosting, name resolution, and certification. To address these
issues, the “Decentralized Web” movement advocates for de-
centralized alternatives. Distributed Hash Tables (DHTs) have
emerged as a key component facilitating this movement, as they
offer efficient key/value indexing. The InterPlanetary File System
(IPFS) exemplifies this approach by leveraging DHTs for data
indexing and distribution. A critical finding of previous studies is
that DHT PUT performance for record storage is unacceptably
slow, sometimes taking minutes to complete and hindering the
adoption of delay-intolerant applications. To address this chal-
lenge, this research paper presents three significant contributions.
First, we present the design of Optimistic Provide, an approach
to accelerate DHT PUT operations in Kademlia-based IPFS
networks while maintaining full backward compatibility. Second,
we implement and deploy the mechanism and see its usage in
the de-facto IPFS deployment, Kubo. Third, we evaluate its
effectiveness in the IPFS and Filecoin DHTs. We confirm that
we enable sub-second record storage from North America and
Europe for 90% of PUT operations while reducing networking
overhead by over 40% and maintaining record availability.

Index Terms—InterPlanetary FileSystem, IPFS, DHT perfor-
mance, Kademlia, Filecoin

I. INTRODUCTION

Powerful economies of scale have fueled the growing con-
solidation of web systems [1], [2]. For example, administrators
of websites frequently opt to utilize cloud platforms such as
Amazon EC2, third-party domain name system providers such
as GoDaddy, content delivery networks such as Akamai, as
well as central Certificate Authorities like Let’s Encrypt. Al-
though convenient, these constitute single points of technical,
organizational, and regulatory failure.

The “Decentralized Web” has emerged as a response to
this increasing concentration of power. The Decentralized Web
encompasses a range of technologies designed to shift control
away from these dominant entities. These technologies operate
through open-source software, attempting to decentralize con-
ventional functions of the web, including name systems [3],
[4], object storage [5], [6], and social media [7], [8]. By
enabling anyone to utilize and contribute to the software,
this endeavor aims to reduce barriers to participation and
counteract the prevailing trend of web consolidation [1].

One exemplar is the InterPlanetary FileSystem (IPFS) —
a set of peer-to-peer (P2P) protocols that enable the de-
centralized publication and retrieval of web objects. IPFS
is widely recognized as the primary storage layer for the
Decentralized Web because of its content-addressed nature,
decoupling the content identifier from its storage location.

The adoption of IPFS is widespread, with over 120 million
IPFS gateway requests and more than 200 k unique peers
participating in the P2P network every week [9]. IPFS serves
as the underlying technology for various Decentralized Web
applications, encompassing social networking and discussion
platforms (Discussify, Matters News), data storage solutions
(Space, Peergos, Temporal), content search (Almonit, Deece),
messaging (Berty), content streaming (Audius, Watchit), and
e-commerce (Ethlance, dClimate) [10]. Notably, mainstream
browsers like Opera and Brave have integrated support for
accessing IPFS, facilitating its widespread and easy adoption.

At the heart of IPFS is a Kademlia DHT, which is used to
index available content and facilitate peer discovery. Previous
studies have found performance challenges in IPFS’s use of the
Kademlia DHT [5]. While the GET performance is generally
satisfactory [5], [9], with record retrieval times under a second,
the PUT performance is significantly slower, taking several
dozen seconds or even minutes. Yet, efficient DHT PUT
performance is crucial for the delay-sensitive publication of
objects in the network. IPFS’s content-addressed nature makes
it necessary for mutable content to be re-published with every
change. As users expect content changes to propagate quickly,
low-latency access to data is vital for meeting the demand of
delay-intolerant interactions in IPFS [11].

Although there has been a wealth of prior work focusing
on optimizing the GET performance of Kademlia-based DHTs,
there has been little work optimizing the performance of PUT
operations. As this is vital for the operation of IPFS, we
propose an optimized PUT operation for the Kademia DHT
in IPFS, which we refer to as Optimistic Provide. Through
empirical measurement, we show that the long delays in IPFS
PUT operations are driven primarily by unreachable peers
and exacerbated by the termination condition of the existing
design. To overcome this, we develop a novel model capable
of predicting the likelihood that discovered peers will belong
to the eventual target set of peers used to store the record. This
allows us to “optimistically” store records on the most likely
target peers before all peers have responded. By tuning the
query termination condition, we can therefore avoid waiting
for unreachable peers to reply. Through this, we achieve sub-
second publication times in the IPFS network from North
America and Europe for 90% of PUT operations, equating to
a speed-up of over one order of magnitude. Our contributions
are:

1) We design the Optimistic Provide mechanism — an ap-
proach to accelerate DHT PUT operations in Kademlia-
based IPFS networks while maintaining full backward

compatibility.
2) We implement and deploy our Optimistic Provide mech-

anism in the go-libp2p-kad-dht1 library, and see
its usage in the de-facto IPFS deployment, Kubo.

3) We evaluate the effectiveness of our approach. We
examine its performance, reliability, and overhead across
two of the most important IPFS DHTs. We confirm that
we improve performance by over one order of magni-
tude while maintaining data availability and reducing
networking overhead by over 40%. This enables sub-
second record storage in North America and Europe for
90% of the PUT operations.

By addressing the performance challenges associated with
the PUT operation in IPFS’ Kademlia DHT, this research
contributes to the overall improvement and scalability of
decentralized web systems, facilitating their adoption and
practical usability.

II. BACKGROUND

We provide a brief overview of IPFS and its use of the
Kademlia DHT protocol. For full details, we redirect interested
readers to [5] and [12], respectively.

A. The InterPlanetary File System (IPFS)

Overview. The InterPlanetary File System (IPFS) is a set
of protocols that facilitate decentralized content-addressable
media object storage and retrieval. At its core is a content-
based addressing scheme using unique Content Identifiers
(CIDs). These CIDs are hash-based, immutable, and self-
certifying. This means any peer can serve the content requested
via a CID, and the receiver can verify that the data served
matches the identifier requested using hashing. In order to
know which node hosts the data for a certain CID, IPFS
uses Distributed Hash Tables (DHTs) to maintain a mapping
between a CID and the physical node that can serve it. Peers
can then use this DHT to publish and retrieve objects without
requiring any central authority. The ecosystem consists of
multiple such DHTs facilitating content and peer discovery
(discussed later).

Content Addressing. When new content is added to IPFS, it is
first divided into smaller chunks, usually 256 kB in size [13].
Each chunk is then assigned a CID, generated by hashing the
content and then attaching metadata. This unique identifier is
used for publishing and retrieving the unique object.

Peer Addressing. Every peer within IPFS also has a unique
identifier, known as a PeerID, which is created by hashing its
public key. Within IPFS, anyone can search (via the DHT) for
a specific PeerID to retrieve its associated network addresses
(e.g., IP address plus port). The network addresses can then
be utilized to establish a connection with that peer.

Content Publication. To make content available in the IPFS
network, two records are written to the DHT: (i) a provider
record mapping a CID to a PeerID, and (ii) a peer record

1 https://github.com/libp2p/go-libp2p-kad-dht

mapping the PeerID to its network addresses. Both processes
require locating the 20 closest peers to the CID or PeerID,
respectively, and storing the record with all of them [12].
Record replication on 20 peers ensures availability in the
presence of churn.

Content Retrieval. To find the provider network addresses
for a CID, a peer (i) looks up the provider record to find the
PeerID that claims to provide the content on the DHT, and (ii)
looks up the peer record to identify its physical address. Once
this has been obtained, the content request is sent to the host.

Filecoin. IPFS involves peers hosting each others’ content.
Naturally, this requires an incentive model to encourage peers
to contribute resources. To achieve this, IPFS uses Filecoin,
an incentivized storage layer building on top of IPFS2. The
Filecoin protocol ensures, through monetary incentives and
mathematical proofs, data replication and availability over
time. As part of this, Filecoin relies on a separate DHT
for peer discovery. Full details can be found in [14].

B. Kademlia in IPFS

Kademlia Protocol. IPFS uses Kademlia for its DHT imple-
mentation for both publishing provider records as well as peer
discovery. The Kademlia DHT protocol [12] is a decentralized
peer-to-peer algorithm designed for efficient retrieval and
storage of key-value pairs in a large network of peers. Each
peer in Kademlia possesses a unique and random identifier in
the form of a fixed-size bit string. The identifier functions not
only as a means of identification but also as a routable entity
in the network. For that, each peer builds its local routing table
and employs XOR distance metric to calculate routing hops.

XOR Metric. The XOR metric is the basis for the Kademlia
protocol’s key space and distance calculation. It enables a peer
to derive the distance between any two node IDs (PeerIDs) or
file hashes (CIDs) by performing a bitwise XOR operation on
them.

Routing Table. The routing table in Kademlia is a data
structure that each peer maintains to facilitate efficient routing
and neighbor selection. The routing table is organized as a
binary trie, commonly referred to as a k-bucket trie, where
each depth level represents a specific prefix length of the
PeerIDs. The highest level corresponds to the most significant
bits, while the lowest level represents the least significant bits.
Each peer’s routing table is divided into k-buckets, with each
bucket containing k peers that share a specific prefix length of
their ID. The number k typically represents a small constant
value and is set to 20 in the IPFS DHT network as originally
proposed in [12]. Peers within a bucket are sorted in ascending
order of their last contact time, allowing for efficient eviction
of stale or unresponsive peers.

To maintain an up-to-date routing table, Kademlia employs
a refresh mechanism. Peers periodically refresh their buckets
by performing lookup operations for random IDs belonging
to each bucket. These lookups trigger the exchange of peer

2 https://filecoin.io

https://github.com/libp2p/go-libp2p-kad-dht
https://filecoin.io

0 5 10 15 20

a) Time in s

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Total Time

DHT Walk

Follow-Up

DHT Walk
(Optimal)

0 20 40 60 80 100

b) Delay Ratio in %

Last Peer

First Peer

Fig. 1: Left: CDF of total PUT latencies in the IPFS DHT
network and CDFs of their comprised DHT walk and follow-
up phases. The optimal DHT walk CDF shows the optimiza-
tion potential. Right: time between locating the first/last of
the closest peers and initiating the storage of the provider
record to them as a ratio of the total time. The experiment
includes 8, 503 measurements between 2023-06-06 and 2023-
06-07 from one host in eu-central-1 AWS region.

information, allowing the peer to update its routing table
with fresh data. During each routing table refresh, the peer,
in theory, iterates through all of its buckets, which amounts
to 256 buckets. However, the IPFS and Filecoin reference
implementations Kubo3 and Lotus4 only refresh the first 16
buckets in practice. Consequently, each time the peer refreshes
its routing table, it performs 16 look-ups to identify the 20
closest peers for 16 randomly selected keys that fall into each
of its buckets.
Kademlia Routing. When the user initiates a request to
retrieve a key-value pair, the local peer uses its routing table
to identify the currently known closest peers to the target key.
It then sends requests to the selected peers in parallel with
a specific concurrency factor, progressively expanding the set
of closer peers until it finds the desired key or exhausts the
search depth. Through the XOR metric and routing table, the
Kademlia DHT protocol is theoretically highly efficient as
peers only need to contact log(N) peers in the network during
a search where N is the total number of peers in the network.
PUT Operation. Storing provider records in the IPFS Kadem-
lia DHT comprises two steps: (i) identifying the (network-
wide) 20 closest peers to the target key (referred to as the DHT
Walk), and (ii) storing the records with them (the Follow-Up).

The DHT walk involves a) adding the 20 closest peers
to the target key from the local routing table to a query
queue, b) concurrently querying the 10 closest ones from the
query queue to ask for even closer candidates, c) adding the
responses to the query queue, and then d) starting over with
b). The DHT walk terminates as soon as the initiator has
queried and gotten responses from the three closest peers in
its query queue. Finally, the follow-up phase starts. This phase
involves contacting the 20 closest discovered peers from the
query queue and pushing the record to them.

III. MEASUREMENTS & MOTIVATION

We start by exploring the current performance and bottle-
necks of the PUT operation in IPFS.

3 https://github.com/ipfs/kubo 4 https://lotus.filecoin.io/

PUT Performance. To assess the current PUT performance,
we repeatedly generate random provider records, store them
in the IPFS DHT, and measure the latency. Figure 1a depicts
our results (measurement details are in the caption). The solid
black line shows the cumulative distribution function (CDF)
of the total time to store provider records in the IPFS DHT
(DHT walk + follow-up phases). We observe PUT latencies of
6.3 s, 20.6 s, and 49.8 s for the 50th, 90th and 95th percentile,
respectively. These latencies severely constrain the viability
of delay-intolerant use-cases. For instance, in the RAIL user-
centric performance model [15], delays above 1 s or 10 s result
in user focus loss and user frustration, respectively.

Optimization Potential. Figure 1a further breaks down the
latency CDFs for the DHT walk and follow-up phases. This
shows that the DHT walk is the primary contributor to the
overall latency, making up over 90% of the total time in the
majority of cases. We find that there is a significant delay
between the discovery of the network-wide 20 closest peers
and the follow-up phase. The green dotted-dashed line in
Figure 1a shows a CDF of optimal DHT walks. An optimal
DHT walk terminates immediately when the last of the 20
closest peers that were eventually chosen to hold the provider
record is discovered. The graph shows that in most cases, the
optimal DHT walk terminates several seconds earlier.

Figure 1b also shows CDFs of the time elapsed between
discovering the first (dashed red line) and last (solid black
line) of the 20 closest peers and the follow-up phase as a ratio
of the total PUT operation time. The graph shows that in over
50% of the PUT operations, the delay between discovering
all the 20 closest peers and storing the provider records with
them make up over 60% of the total time of the operation.
The effect is amplified in the delay of the discovery of the first
of the 20 closest peers until storing the provider record with
it: the delay makes up over 80% of the total time in 50% of
the cases.

Causes of Underperformance. The results show that the
main contributing factor for the delay is the DHT walk
termination condition. The final peers are often discovered
several seconds before they are contacted to hold the record.
As mentioned above, the current algorithm requires successful
responses from the three currently known closest peers. If
any of the three peers is unreachable, their query delays the
entire process. The DHT walk then progressively queries peers
further away from the target key until the three closest ones
it knows have successfully responded. We call this behavior
DHT Walk backtracking. However, the peers that are more
distant from the target key might have been discovered in
earlier queries, contributing to the delay. Only 4.3% of PUT
operations do not experience any delay between discovering
all 20 closest peers and the follow-up phase.

IV. DESIGN OVERVIEW

The preceding section observed that PUT operations in
the IPFS Kademlia DHT exhibit multi-second latencies, even
though the median PUT operation discovers the peers with

https://github.com/ipfs/kubo
https://lotus.filecoin.io/

whom the query initiator ultimately stores the provider records
already within 1.3 s. In order for IPFS to support a wider
spectrum of delay-sensitive use-cases we propose the IPFS
Optimistic Provide to improve the DHT PUT performance.

A. Optimistic Provide

Overview An Optimistic Provide query consists of the same
phases and steps as a classic PUT operation, as described
in Section II. The crucial differences are in (i) evaluating
individual peers’ target key proximity for immediate and
effective record holding, (ii) evaluating the currently known 20
closest peers’ target key proximity to decide when to terminate
the DHT walk, and (iii) returning from the follow-up phase
after only a subset of queries have completed.

As it will become clear later, a prerequisite for an Optimistic
Provide is prior knowledge of the global network size. We
will assume this knowledge exists for now and provide a
comprehensive explanation in Section IV-B.

Step 1: Evaluate Target Key Proximity: Individual
Peers. First, a peer launches a DHT walk to discover which
peers to store its record with. During the DHT walk, each
time the initiator encounters a peer, it verifies whether this
peer is already sufficiently close to the target key to host
the record. To determine if a peer is sufficiently close to a
target key, it requires knowledge of the likelihood that there
exist no 20 peers closer to the target key than the peer it
is currently examining. Calculating this requires an estimate
of the global network size. We later show that, by assuming
uniform peer identifier distribution and possessing knowledge
of the network’s size, the initiator can predict the probability
that the peer indeed belongs to the set of the 20 closest peers
based on its proximity to the target key (details on how this
is obtained in Section IV-B).

Step 2: Evaluate Target Key Proximity: Set of Peers. Next,
upon each query, the initiator assesses the set of the 20 closest
peers it currently knows. If it is highly probable that this
set constitutes the actual 20 closest peers, the peer promptly
terminates the DHT walk without awaiting final confirmation
from the 3 closest peers (as done in the original algorithm).
We later show how the initiator can predict the probability that
the set of peers indeed represents the final set based on their
aggregate proximity to the target key.

Step 3: Prematurely Return from the Follow-Up Phase. Re-
call, the follow-up phase involves the initiator pushing the
record to the chosen 20 peers. However, premature DHT
walk termination skips the previously mentioned backtracking
behavior which negatively affects the latencies of the follow-
up phase. Timeouts from contacting unreachable peers pre-
viously experienced during the DHT walk now increasingly
manifest in the follow-up phase. Thus, a single peer could
delay the whole follow-up phase because the initiator would
wait for the request to time out. To address this, the Optimistic
Provide algorithm returns control back to the user after k′

peers with k′ < 20 have responded. 20−k′ additional queries
remain in-flight asynchronously. Although configurable, we

choose k′ = 5 based on previous studies where it was found
that decreasing k to 15 in the IPFS network would have a
negligible impact on record availability [16]. This ensures
immediate record availability after control has been handed
back to the user. We emphasize that the remaining queries are
not canceled. We call waiting for all 20 responses the done
strategy and only waiting for k′ peers, the return strategy. We
will refer to both in the following as Control Flow Strategies.

B. Network Size Estimation

To implement Optimistic Provide, it is necessary for a
peer initiating a PUT to know the size of the global DHT.
One seemingly intuitive solution might involve crawling the
entire network to derive a number of participating peers. Yet,
this approach proves highly impractical due to the excessive
overhead it introduces. Distributing the task to a subset of
peers that share the information would require trust in their
honesty, which is a challenging proposition in a permissionless
network. We therefore next present a lightweight technique
that allows individual peers to locally estimate the global
network size by briefly describing the peer to target key
proximity model according to [17].

Proximity Model. Let the DHT network consist of N peers
P1, P2, . . . PN , where each peer is identified by its PeerID,
which we assume to be random uniformly distributed identi-
fiers. Each identifier is a bitstring of length L which means the
address space spans [0, 2L). Recall, Distances in a Kademlia
network are computed using the XOR ⊕ metric. If we choose
a random address A in the address space, then the distance
D to another address X would be D(X) = X ⊕ A. When
we take the N peers Pi with i = 1, . . . , N and calculate their
distances Di to address A we end up with a set D of distances
with D = {D1, D2, . . . , DN} where D1 = P1 ⊕ A, D2 =
P2 ⊕ A, . . . ,Dn = PN ⊕ A. If we assume, without loss of
generality, D1 < D2 < · · · < Dn then Di = D(i) where D(i)

is called the i-th order statistic. In figures, we normalize the
address space of [0, 2L) to [0, 1) for simplicity.

Now, we assume continuous random variables instead of
discrete ones, which we justify with the large address space
of size 2L where L = 256 in the case of IPFS. Then, we can
apply the probability distributions for order statistics sampled
from a uniform distribution. These probability distribution
functions are given by Beta distributions B(α, β) with varying
values for their shape parameters α and β. In our case, α = i
where i corresponds to the i-th order statistic in the range
i = 1, . . . , N and β = N − i+ 1 [18, p.63].

Deriving the Network Size. To derive a network size estima-
tion from this model, we focus on the expected values E[X]
of the above parameterized Beta distributions, which is given
by E[X] = α/(α+ β) where X is a random variable [18]. In
our case, the random variable is an order statistic D(i), which
lets us rewrite the expected value with values for α and β
from above to

E[D(i)] =
1

N + 1
· i . (1)

This equation shows that the expected value for each order
statistic (i) is proportional to (N+1)−1 where, again, N is the
network size we are searching for. This equation also confirms
the intuition that a larger network yields a denser keyspace
and vice-versa. Our strategy is to perform multiple look-ups,
calculate the i-th-closest peers’ average distances to the target
keys, do a linear fit f(x) = mx + b through the average
values, and use the slope of the fit to arrive at a network size
estimation. In our case, the linear fit must cross the origin,
hence b = 0. This aggregation technique deviates from [17]
because we find ours to yield network size estimations with
at least 6.7% lower variance.

Sampling the Keyspace. In order to obtain sufficient statistical
information to carry out the above network size estimation,
the above algorithm requires look-ups for random keys in the
network. We naturally wish to avoid introducing additional
overhead by initiating excessive queries. Therefore, we rely
exclusively on information from the existing routing table
refresh maintenance queries (see Section II). However, this
introduces bias towards the peer’s local keyspace density and
thus affects the network size estimation. This is because when
performing a routing table refresh, a peer searches for random
keys within all of its buckets. Consequently, the routing
maintenance search tends to uncover peers that are in close
proximity to the searching peer. As a result, when dealing
with higher bucket numbers, we tend to encounter the same
peers repeatedly. This significantly affects the distribution and
favors the density in the vicinity of the searching peer’s
current keyspace location. If the keyspace happens to be
dense, the peer will overestimate the current network size,
and conversely, the peer will underestimate the network size
in a sparse keyspace. In order to address this bias, we employ
a bias correction technique.

Correcting Local Keyspace Density Bias. The bias correction
technique tries to strike a balance between not discarding
valuable data points and correcting the bias sufficiently. Note,
we cannot change the routing maintenance task itself and can,
instead, select which queries we utilize from its overall set.
Our biased sampling works by weighing data points exponen-
tially less if they fall into a non-full bucket. The assumption
is that if a bucket is full, the key space that the bucket covers
is occupied by enough peers to get a representative sample.
We define the weighing function w as follows:

w(b) = 2l(b)−kmax (2)

where b is the bucket number with b ∈ [0, L), l(b) is the
level of bucket b at the time the closest peers are tracked
with l(b) ∈ [0, kmax], and kmax is the maximum level a bucket
can have. In the case of IPFS kmax = 20. Put simply, non-
full buckets will contribute exponentially less to the overall
network size estimation with decreasing levels. This bias
correction, therefore, alleviates the aforementioned problem of
tracking the same peers repeatedly. Levels for high-numbered
buckets will be zero, so their data points would contribute a
negligible amount to the overall estimation.

For practical implementation, we limit the data collection
to a rolling twindow = 2h time window and require a minimum
of Smin = 16 look-ups and a maximum Smax = 192 to bound
the memory usage of the algorithm5. All three are tunable
parameters and can affect the accuracy of the estimation.

C. Calculating Target Key Proximity of Individual Peers

Recall the Optimistic Provide algorithm used the above
network size estimation to calculate a maximum distance to
a target key that an individual peer must not exceed to be
optimistically considered among the 20 closest peers, with
a certain probability pindividual. This allows the initiator to
immediately store records with peers as it learns about them
during the DHT walk and thus expediting the process. We next
describe how this maximum distance threshold is calculated.

Threshold Calculation. We have shown above how Beta
functions can describe the distribution of peer proximities to
target keys. The CDFs of the above Beta distributions can be
interpreted as functions that represent the probability of finding
the i-th closest peer within a certain distance to a target key.
CDFs of Beta distributions are given by normalized incomplete
beta functions Ix(α, β) with

Ix(α, β) =
Γ(α+ β)

Γ(α)Γ(β)

∫ x

0

tα−1(1− t)β−1dt (3)

for 0 ≤ x ≤ 1 where Γ is the gamma function [19, (8.17.1)]. α
and β are the same shape parameters as above and dependent
on N and i. This means the inverse of this function I−1

x (α, β)
will yield the maximum distance to a target key in which one
finds the i-th peer for a certain probability p given the network
size N . In this case, we need to compute x such that the
equation

p = Ix(α, β) = Ix(i,N − i+ 1) (4)

is satisfied. I−1
x (α, β) will then be the distance threshold in

question. As stated above, I−1
x (α, β) yields the maximum

distance to a target key in which one finds the i-th peer with
probability p. In our case, we want to find the maximum
distance until we do not find the 20-th peer with probabil-
ity pindividual. This means conversely, if a peer falls below
this distance, it will be among the 20 closest peers with
probability pindividual. Therefore, we compute x in Eq. 4 for
p = 1 − pindividual, i = 20, and the current network size
estimate to derive the distance threshold from I−1

x . In our
evaluation below, we chose pindividual = 0.9. Thus, we calculate
the maximum distance value in such a way that we can be 90%
certain that any peer within that range is, indeed, among the 20
closest peers, based on our estimated network size. pindividual
is a tunable parameter and can be chosen freely.

D. Calculating Target Key Proximity of a Set of Peers

In Section III, we identified that prematuring terminating
the DHT walk during a PUT operation addresses the main
performance bottleneck. Recall that the query initiator can

5 Smin=̂ one full r.t. refresh, Smax=̂ one full r.t. refresh every 10min for 2h
(see Section II)

https://dlmf.nist.gov/8.17

leverage the network size estimate to establish a supplementary
termination condition based on the proximity of its currently
known 20 closest peers to the target key to prematurely end
the DHT walk. In this section, we elaborate on this condition
and the precise methodology we employ for its computation.

Threshold Calculation. Unlike in the previous section, where
we calculate the maximum distance for an individual peer, the
DHT walk termination condition now considers the distances
of the set comprising the 20 closest known peers. As the
initiator progresses on its DHT walk and discovers new peers,
it continuously verifies whether the average distance of this set
of 20 closest peers exceeds a maximum distance. If it does,
the initiator prematurely terminates the query. We observe
that the expected value of the average distance of the 20
closest peers to the target key is equivalent to the expected
distance of the hypothetical 10.5-th closest peer. Based on this
insight, we proceed to calculate I−1x(α, β) using the latest
network size estimate N , i = 10.5 and probability pset. This
calculation yields the distance within which we can expect to
find the 10.5-th peer or the average of the 20 closest peers
with a probability of pset. In our evaluation below, we choose
pset = 0.9. Note, pset is also a tunable parameter.

V. EVALUATION

We have implemented, merged, and released the above
algorithms in the go-libp2p-kad-dht repository that
implements the Kademlia protocol which is used by the
IPFS reference implementation, Kubo, and also the Filecoin
reference implementation, Lotus. Kubo officially supports our
feature since v0.20.0. Using this implementation, we next
evaluate our approach on both the IPFS record indexing DHT
and the Filecoin DHT.

A. Performance

We first measure our PUT performance and compare it
with the current implementation as the baseline, which in
the following we call the Classic approach. We specifically
evaluate (i) the PUT performance with different control flow
strategies (see Section IV-A), and (ii) the regional performance
dependence in a globally distributed study.

PUT Performance. Figure 2 shows PUT latencies in the
IPFS (left) and Filecoin (right) networks using the classic and
optimistic approaches with the done and return control flow
strategies (see IV-A). The measurements were performed from
two servers in central Europe over a duration of two days.
The graphs show the number of launched queries for either
approach in the lower right corner. To calculate the classic
return latencies, we record the time until we receive the 15th
response from the final record storage remote procedure call
(RPC) to provide a fair comparison to the Optimistic done
strategy.

The results show that the Optimistic Provide approach with
the early return strategy is the fastest in both networks. Even
the Optimistic Provide done strategy is always faster than
the classic approach with either strategy. Table I shows the
latency values for the 50th, 90th, and 95th percentiles and

0 5 10 15 20 25 30

Time in s

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Sample Size:
Classic: 8, 502

Optimistic: 11, 964

IPFS

0 5 10 15 20 25 30

Time in s

Sample Size:
Classic: 8, 782

Optimistic: 16, 185

FilecoinClassic (done) Classic (return) Optim. (done) Optim. (return)

Fig. 2: PUT latencies in the IPFS (left) and Filecoin (right)
networks using the classic and optimistic approaches with the
done and return strategies (see IV-A)

TABLE I: PUT latencies in the IPFS and Filecoin networks
for different approach and control flow strategy combinations.

Return Strategy Done Strategy
Percentile 50th 90th 95th 50th 90th 95th
IPFS
classic 5.8 s 15.8 s 43.0 s 6.3 s 20.6 s 49.8 s
optim. 0.51 s 0.80 s 0.92 s 5.1 s 8.7 s 15.4 s
speed-up 11.3× 19.7× 46.7× 1.2× 2.3× 3.2×
Filecoin
classic 17.5 s 20.1 s 24.8 s 22.2 s 24.5 s 29.5 s
optim. 2.0 s 3.0 s 3.8 s 5.2 s 15.4 s 16.4 s
speed-up 8.7× 6.7× 6.5× 4.2× 1.5× 1.7×

the corresponding speed-ups between both approaches for
each strategy. The largest latency difference is between the
Optimistic Provide return and the Classic done combinations,
which is also the latency improvement that users will experi-
ence if they adopt Optimistic Provide. The speed-ups here are
12.3x, 25.7x, 54.1x in the IPFS network and 11.1x, 8.1x, 7.7x
in the Filecoin network for the 50th, 90th, and 95th percentiles,
respectively.

Regional PUT Performance. To assess how our approach per-
forms in different regions, we measure its performance across
the seven AWS regions. In each region, we deploy a peer that
performs PUT operations with the optimistic return approach
and another one with the Classic done approach. For each
approach, we configured a privileged node that sequentially
instructs each peer in rounds to perform a PUT operation with
a randomly generated record and all remaining peers to retrieve
the record (GET operation). Doing this allows us also to
measure record retrievability rates. Due to resource constraints,
we only perform this experiment in the IPFS network (not
Filecoin). We perform a total of 10, 753 and 18, 756 probes
with the classic and optimistic approach, respectively, across
all regions.

Figure 3 shows the 50th, 90th, and 95th PUT latency
percentiles from each AWS region. The number of probes from
each region for each approach is at the top of the graph. We
confirm that in every region, our proposed approach outper-
forms the defined baseline significantly. Further, in Table II,
we evaluate the retrievability rates. It shows the total number
of PUT but also GET operations we performed with either
approach and the errors we encounter. The table shows that the
error rates of our proposed approach are similar to the baseline.

0

2

4

6

8
5
0
th

P
er

ce
n
ti

le
L

a
te

n
cy

in
s 8.53s

7.59s 7.79s

6.56s
7.45s

6.32s 6.33s

1.48s 1.19s 1.42s

0.51s
1.28s

0.48s 0.57s

1,554|2,677 1,537|2,675 1,512|2,682 1,548|2,697 1,542|2,680 1,525|2,699 1,535|2,646Samples:

IPFS Classic (done) Optimistic (return)

0

5

10

15

20

9
0
th

P
er

ce
n
ti

le
L

a
te

n
cy

in
s 20.98s

17.54s 18.07s
19.55s

16.79s

20.37s 20.99s

2.05s 1.58s 1.93s
0.85s

1.77s
0.78s 0.85s

af-
sou

th-
1

ap-
sou

th-
1

ap-
sou

the
ast

-2

eu-
cen

tra
l-1

sa-
eas

t-1

us-
eas

t-2

us-
wes

t-1
0

10

20

30

40

9
5
th

P
er

ce
n
ti

le
L

a
te

n
cy

in
s

36.39s

26.87s

35.56s

27.64s 27.50s

45.94s
42.16s

2.46s 1.93s 2.30s 1.66s 2.20s 1.22s 1.04s

Fig. 3: PUT latency percentiles of the IPFS network across
AWS regions. Data collected from 2023-06-26 to 2023-06-29.

The errors we encountered for PUT operations are exclusively
DHT walk timeouts which we configured to be 3min, and for
GET operations, the errors are unretrievable records. The GET
errors correspond to two unresolvable records for the classic
and one for the optimistic approach.

B. Performance Exploration

We next focus on the performance of the specific sub-
components to understand how they contribute to the above
results.

Estimation Accuracy. To assess the network size estimation
accuracy, we performed two 1.5 months long-term measure-
ments in the IPFS and Filecoin networks with six peers in each
network that continuously participate in either DHT. These
peers continually estimate the network size based on data from
routing table maintenance tasks. We define full network crawls
as the baseline to compare the results against. Therefore, we
overlay relevant graphs with the total number of peers our
crawls have found in the DHT plus their fraction our crawler
was able to dial. We consider network crawls to provide a
robust and comprehensive view of all peers participating in a
DHT network.

In Figure 4b and 4c, we observe that all peers consistently
identify the new network size. The inset graph in Figure
4b shows a period where the response of the network size
estimation to a sudden network topology change is observable.

Both graphs confirm the accuracy of the estimations but
also show that the peers systematically underestimate the total
number of peers in both networks compared to our defined
baseline. Individual peers, on average, estimate the network
size to be 6.0% and 13.5% lower than our defined baseline in
the IPFS and Filecoin networks, respectively. This observation
can be attributed to the previously mentioned backtracking
behavior. In our proposed approach, routing table refreshes
continue to use the classic approach to find the 20 closest peers
to a target key to find suitable peers for its buckets. Because of
the backtracking behavior, the sets of peers that feed into the
network size estimation calculation exclude the closest peers

TABLE II: Regional PUT performance sample sizes and error
counts aggregated across all seven AWS regions.

Classic PUT Classic GET Optim. PUT Optim. GET
Errors 91 12 7 6
Total 10, 753 64, 515 18, 756 112, 531

that are unreachable. Consequently, this creates an artificially
sparser keyspace, leading to a lower network size estimation.
Because the share of undialable peers in the Filecoin network
is, on average double the share of the undialable peers in the
IPFS network, the relative underestimation is equally higher in
the Filecoin. As we have shown above, these underestimates do
not have a significant impact on performance, yet if more ac-
curate estimates are required we note that the underestimations
exhibit consistency across measurement points, suggesting
that a deployment-wide scaling factor could correct for these
errors.

Bias Correction Efficacy. The bias correction is intended to
overcome the limitations of reusing the routing table main-
tenance queries. As above, we deployed six peers in both
networks and let them perform their ordinary routing table
maintenance tasks. Figure 4a presents the accuracy of the bias
correction technique proposed in Section IV-B for the IPFS
and Filecoin networks. The graphs show the network size
estimations overlayed with the baseline results from network
crawls over 3.5 d in June 2023. The graphs on the left show
network size estimations without any bias correction applied,
and the graphs on the right show the same data points but with
a weight applied according to Equation (2).

The results confirm that the bias correction achieves a
convergence of the network size estimations across all six
peers within a network. The standard deviation between the
weighted network size estimations among the six peers in
each network is less than 5% of their average size estimate
and decreased by 22.6% in the IPFS network and by 61.0%
in the Filecoin network in the 90th percentile during the
measurement period.

These results show that by leveraging the routing table
refresh queries as the data source, the introduced bias can be
effectively mitigated. Consequently, this enhancement enables
the network size estimation algorithm to operate without
incurring any additional networking overhead.

Selected Peers to Target Key Proximity. As the network
size estimation algorithm allows peers to calculate target key
distance thresholds, this subsection’s objective is to confirm
that the chosen peers responsible for holding the record exhibit
comparable target key proximity compared to the baseline. By
ensuring this condition, we can be confident that any other
peers seeking to retrieve the record will successfully locate it
within the network.

Figure 5 shows CDFs of the selected peer’s distances to the
target keys. This distribution is susceptible to network size
changes, which we verified stayed almost constant during the
measurement time. We confirm that the average distance of all
selected peers in the optimistic approach differs less than 0.3%

1

2

3

4

N
et

w
o
rk

S
iz

e
in

1
0

4

IPFS Unweighted

Estimates (6 Peers) Total Peers Dialable Peers

IPFS Weighted

09. June 10. June 11. June 12. June

Date in 2023

0

2

4

N
et

w
o
rk

S
iz

e
in

1
0

3

Filecoin Unweighted

09. June 10. June 11. June 12. June

Date in 2023

Filecoin Weighted

(a)
20. Apr 01. May 10. May 20. May 01. Jun

Date in 2023

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
et

w
o
rk

S
iz

e
in

1
0

4

IPFS

Estimations
(6 Peers)

Total Peers

Dialable Peers

(b)
10. Jun 20. Jun 01. Jul 10. Jul 20. Jul

Date in 2023

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
et

w
o
rk

S
iz

e
in

1
0

3

Filecoin

Estimations (6 Peers)

Total Peers

Dialable Peers

(c)

Fig. 4: a) Efficacy of the bias correction technique. Each row shows the same data for the IPFS and Filecoin networks. The
columns show unweighted data points (left) and weighted data points (right). b) and c) Long-term measurement of network
size estimations from 6 individual peers in the IPFS and Filecoin networks, respectively. All graphs are overlayed with the total
number of peers and their dialable fraction from network crawls. The inset graph in b) shows the reaction of the estimation
algorithm to a network size increase.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

Normalized XOR Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

IPFS

Classic (170,040)

Optim. (240,296)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Normalized XOR Distance

Filecoin

Classic (175,637)

Optim. (324,254)

Fig. 5: CDFs of distances of selected peers to hold provider
records to the target keys for the IPFS (left) and Filecoin
(right) networks.

from the classic approach in the IPFS network and 10.7% in
the Filecoin network. For the IPFS network, we can confi-
dently assert that the retrievability remains uncompromised
supporting earlier results in Table II

C. Overhead

We finally measure the overhead of the mechanism. We do
so from two angles. Due to the absence of the backtracking
mechanism filtering out unreachable peers, the optimistic
approach is expected to display a higher overhead in failed
RPCs. Yet, we also conjecture that prematurely terminating
the DHT walk may reduce traffic. While we acknowledge that
the network size estimation algorithm incurs additional com-
putational costs, our experiments did not reveal a significant
impact.

ADD PROVIDER RPC Success Rate We first inspect the
ADD_PROVIDER RPC success rate, as failed RPC calls are
a clear form of wasted overhead. This is the RPC issued to
each of the closest peers in the follow-up phase to store the
record. A low success rate implies reduced record replication
and heightened vulnerability to peer churn.

Figure 6a shows the number of successful ADD_PROVIDER
RPCs per PUT operation in the IPFS and Filecoin networks.
The measurement methodology and dataset are identical to
the one in Section V-A-PUT Performance. Because the record
replication factor in both networks is set to 20, the optimal
distribution would be a single bar at 20 successful RPCs per

(a)

0%

10%

20%

30%

O
cc

u
re

n
ce

s

IPFS

0 1 2 3 4 5

ADD_PROVIDER Errors

0%

20%

40%

O
cc

u
re

n
ce

s

Filecoin

(b)

Fig. 6: a) Distributions of the number of successful
ADD_PROVIDER RPCs per provide operation. The num-
bers in parenthesis show the number of PUT operations. b)
ADD_PROVIDER RPC errors in the asynchronous phase of
the Optimistic Provide approach in the IPFS and Filecoin
networks. The sample size is 11, 964 and 16, 185, respectively.

PUT operation. However, in a permissionless network where
peers can join and leave the swarm at any time, this is rare.

The data shows that the centers of masses are 16.1, 17.5
in the IPFS, and 19.3, 18.7 in the Filecoin network for the
optimistic and classic approaches, respectively. This means our
proposed solution performs worse in IPFS but better in the
Filecoin network. This is in line with the result in Section V-B,
where we found that in the Filecoin network, our approach
selected peers that are slightly further away from the target
than the baseline. These peers are more likely to be reachable.

Figure 6b shows the number of ADD_PROVIDER RPC
errors per PUT operation of the asynchronous phase after
control has been handed back to the user for the optimistic
approach for the IPFS and Filecoin networks. This graph
shows that in almost 85% and almost 50% of the PUT
operations, at least one of the five RPCs fails and would delay
the whole operation. This shows that the adaptation of the
return control flow strategy has a significant benefit. We justify
the asynchronous phase, wherein additional network requests
are in-flight but remain invisible to the user, with the notably
reduced networking overhead achieved through our optimistic
approach, as demonstrated in the following section.

0 50 100 150 200 250 300

RPCs per PUT Operation

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

IPFS

Classic (8,502)

Optim. (11,964)

0 50 100 150 200

RPCs per PUT Operation

Filecoin

Classic (8,782)

Optim. (16,185)

Fig. 7: CDFs of issued RPCs per PUT operation during DHT
walk and follow-up phases for the IPFS (left) and Filecoin
(right) networks.

Networking Overhead. Last, we evaluate the networking
overhead using the number of issued RPCs per PUT operation
by reusing the dataset from Section V-A-PUT Performance.
Figure 7 shows CDFs of the number of issued RPCs per PUT
operation. This includes all RPCs in both the DHT walk and
follow-up phases, which means the theoretical minimum is 20
RPCs (because the follow-up phase always consists of at least
that many). In both networks, the optimistic provide approach
utilizes fewer networking resources. It issues 28, 34, and 36
RPCs in the IPFS indexing DHT, and 28, 34, and 36 RPCs
in the Filecoin DHT for the 50th, 90th, and 95th percentile,
respectively. The classic approach issues 55, 124, 143 RPCs
in the IPFS and 50, 59, 69 RPCs in the Filecoin network
for the same percentiles. Our approach uses at most 56%
the networking resources than the baseline in both networks
across all considered percentiles. This confirms that, overall,
the Optimistic Provide requires lower network traffic.

VI. RELATED WORK

Decentralized Web. The IPFS network has expanded in par-
allel with other Decentralized Web technologies, specifically
the “fediverse” - a collection of server-based federated services
like Mastodon [20], Pleroma [21], and Diaspora [22]. Nonethe-
less, it’s important to note that these fediverse applications
depend entirely on the uptime of federated servers [20], while
IPFS operates without such servers.

P2P Networks. Numerous P2P overlay architectures have
been developed, and several DHT structures have been pro-
posed, including Chord [23], Tapestry [24], Koorde [25],
Pastry [26], and others [27]. These architectures have served as
a foundation for building different applications, such as large-
scale content delivery platforms [28] and decentralized social
networks [29], among other use cases. Instead of developing
an entirely new system, IPFS has embraced the Kademlia
DHT for content indexing [12]. By leveraging and expanding
on these existing technologies, IPFS has become one of the
most extensive implementations of the ”Decentralized Web”
on a global scale. Another prominent example of utilizing
Kademlia for large-scale deployment is BitTorrent [28]. We
note that the Optimistic Provide technique is equally useful
for these deployments. In its pursuit of decentralization, IPFS
aims to resist censorship, taking inspiration from platforms like
Freenet [30] and Wuala [31]. To achieve censorship resistance,

these platforms store encrypted content across a random subset
of peers. On the other hand, IPFS adopts a BitTorrent-like
approach, where nodes only retain the content they have a
specific interest in.

DHT Evaluation & Optimization. The study that most closely
resembles our work measures the operational performance of
IPFS [5], and we draw insights from this paper to inform
our own methodologies. Numerous evaluations have been
conducted to assess the performance of other P2P systems
too. For instance, [32] and [33] assess the implementation
of Kademlia in BitTorrent and discover a notable number
of failed nodes, leading to adverse effects on lookup times.
Additionally, Stutzbach and Rejaie [34] create a model for
evaluating Kademlia’s performance and propose various en-
hancements. In an effort to enhance the performance and
usability of DHTs, several approaches have been explored,
including caching [35], network-aware peer selection [36], and
parallelizing lookups [34].

Network Size Estimation. Our approach relies on accurate
DHT network size estimation. Various approaches have been
proposed previously. Some of these methods necessitate a
custom protocol [37], which in turn requires peers to upgrade
their installation. Others involve explicit sampling of a key
space area, leading to increased networking overhead [38].
A comparative study [39] evaluates three generic counting
algorithms: Sample & Collide [40], HopsSampling [41], and
Gossip-based Aggregation [42]. The approach proposed in this
paper builds atop [17]. We distinguish ourselves from previous
methods by offering a lightweight mechanism that is feasible
for individual peers to compute without requiring peers to
collaborate.

VII. CONCLUSION

This paper has presented the design, implementation, and
evaluation of an accelerated DHT PUT operation for IPFS.
We show that the PUT operation speed-up surpasses one order
of magnitude in various percentile and region combinations,
while maintaining record availability and reducing network
overhead by over 40%. Notably, our approach complements
the already satisfactory GET performance in IPFS [5] by
enabling sub-second PUT latencies in over 90% of operations
from North America and central Europe [9]. We have deployed
our solution in the public IPFS codebase, and our work
now enables a wider spectrum of delay-intolerant applications
within the IPFS ecosystem. We further emphasize that our
technique can be applied to any Kademlia DHT implementa-
tion, extending its impact beyond the IPFS networks.

There are a number of avenues for future work. We plan
to investigate the impact of severe network conditions such
as network partitioning, high churn, or Sybil attacks on
our approach, and the components it comprises. Moreover,
developing a more robust understanding of the key factors
influencing the variations in RPC success rates between the
IPFS and Filecoin network warrants deeper investigation.

REFERENCES

[1] T. V. Doan, R. van Rijswijk-Deij, O. Hohlfeld, and V. Bajpai, “An
empirical view on consolidation of the web,” ACM Transactions on
Internet Technology (TOIT), vol. 22, no. 3, pp. 1–30, 2022.

[2] C. Bommelaer de Leusse and C. Gahnberg, “The global internet report:
Consolidation in the internet economy,” Internet Society, 2019.

[3] “Ethereum Name System,” 2023. [Online]. Available: https://ens.
domains/

[4] “Unstoppable Domains,” 2023. [Online]. Available: https:
//unstoppabledomains.com/

[5] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: A storage
layer for the decentralized web,” ser. SIGCOMM ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 739–752.
[Online]. Available: https://doi.org/10.1145/3544216.3544232

[6] J. Benet, “IPFS-content addressed, versioned, P2P file system,”
arXiv:1407.3561, 2014.

[7] “Mastodon,” 2023. [Online]. Available: https://joinmastodon.org/
[8] “Bluesky,” 2023. [Online]. Available: https://blueskyweb.xyz/
[9] “IPFS KPIs,” 2023. [Online]. Available: https://probelab.io/

[10] “Ipfs ecosystem directory,” https://ecosystem.ipfs.io/, 2022.
[11] “How to host dynamic content on ipfs,” https://blog.ipfs.tech/2023-how-

to-host-dynamic-content-on-ipfs/, 2023, accessed: 2023-06-21.
[12] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[13] J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding I/O performance
of IPFS storage,” in Proceedings of the International Symposium
on Quality of Service. ACM, Jun. 2019. [Online]. Available:
https://doi.org/10.1145/3326285.3329052

[14] “Filecoin: A Decentralized Storage Network,” 2017. [Online]. Available:
https://filecoin.io/filecoin.pdf

[15] “Measure performance with the RAIL model,” 2023. [Online].
Available: https://web.dev/rail/

[16] M. Cortes-Goicoechea and L. Bautista-Gomez, “Rfm 17 — provider
record liveness,” https://github.com/protocol/network-measurements/
blob/master/results/rfm17-provider-record-liveness.md, 2022.

[17] “A new method for estimating p2p network size,”
https://eli.sohl.com/2020/06/05/dht-size-estimation.html, 2020,
accessed: 2023-06-02.

[18] J. E. Gentle, Computational Statistics. Springer New York, 2009.
[Online]. Available: https://doi.org/10.1007/978-0-387-98144-4

[19] “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.
gov/, Release 1.1.10 of 2023-06-15, f. W. J. Olver, A. B. Olde
Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark,
B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
[Online]. Available: https://dlmf.nist.gov/

[20] A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry, and G. Tyson, “Chal-
lenges in the decentralised web: The mastodon case,” in Proceedings of
the Internet Measurement Conference, 2019, pp. 217–229.

[21] A. I. Hassan, A. Raman, I. Castro, H. B. Zia, E. De Cristofaro, N. Sastry,
and G. Tyson, “Exploring content moderation in the decentralised web:
The pleroma case,” in Proceedings of the 17th International Conference
on emerging Networking EXperiments and Technologies, 2021, pp. 328–
335.

[22] B. Guidi, M. Conti, A. Passarella, and L. Ricci, “Managing social
contents in Decentralized Online Social Networks: A survey,” Online
Social Networks and Media, vol. 7, 2018.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[24] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[25] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” in International Workshop on Peer-to-Peer Sys-
tems. Springer, 2003, pp. 98–107.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer, 2001, pp. 329–350.

[27] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
preserving p2p data sharing with oneswarm,” in Proceedings of the
ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 111–122.
[Online]. Available: https://doi.org/10.1145/1851182.1851198

[28] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6. Berkeley, CA, USA, 2003,
pp. 68–72.

[29] K. Graffi, C. Gross, D. Stingl, D. Hartung, A. Kovacevic, and R. Stein-
metz, “LifeSocial. KOM: A secure and P2P-based solution for online
social networks,” in CCNC, 2011.

[30] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,” in
Designing privacy enhancing technologies. Springer, 2001.

[31] T. Mager, E. Biersack, and P. Michiardi, “A measurement study of
the wuala on-line storage service,” in 2012 IEEE 12th International
Conference on Peer-to-Peer Computing (P2P). IEEE, 2012.

[32] S. A. Crosby and D. S. Wallach, “An analysis of bittorrent’s two
kademlia-based dhts,” Rice Technical Report, Tech. Rep., 2007.

[33] S. Wolchok and J. A. Halderman, “Crawling BitTorrent DHTs
for fun and profit,” in 4th USENIX Workshop on Offensive
Technologies (WOOT 10). Washington, DC: USENIX Association,
Aug. 2010. [Online]. Available: https://www.usenix.org/conference/
woot10/crawling-bittorrent-dhts-fun-and-profit

[34] D. Stutzbach and R. Rejaie, “Improving lookup performance over a
widely-deployed dht,” in Proceedings IEEE INFOCOM 2006. 25TH
IEEE International Conference on Computer Communications. IEEE,
2006, pp. 1–12.

[35] O. Saleh and M. Hefeeda, “Modeling and caching of peer-to-peer
traffic,” in Proceedings of the 2006 IEEE International Conference
on Network Protocols. IEEE, Nov. 2006. [Online]. Available:
https://doi.org/10.1109/icnp.2006.320218

[36] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, and R. Stein-
metz, “Modelling the internet delay space based on geographical loca-
tions,” in 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing. IEEE, 2009, pp. 301–310.

[37] N. Evans, B. Polot, and C. Grothoff, “Efficient and secure decentralized
network size estimation,” vol. 7289, 05 2012, pp. 304–317.

[38] S. Mane, S. Mopuru, K. Mehra, and J. Srivastava, “Network size
estimation in a peer-to-peer network,” 2005.

[39] E. Le Merrer, A.-M. Kermarrec, and L. Massoulie, “Peer to peer size
estimation in large and dynamic networks: A comparative study,” in 2006
15th IEEE International Conference on High Performance Distributed
Computing, 2006, pp. 7–17.

[40] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh,
“Peer counting and sampling in overlay networks: Random walk
methods,” ser. PODC ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 123–132. [Online]. Available:
https://doi.org/10.1145/1146381.1146402

[41] D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and A. Demers,
“Practical algorithms for size estimation in large and dynamic groups,”
01 2004.

[42] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in
large overlay networks,” in 24th International Conference on Distributed
Computing Systems, 2004. Proceedings., 2004, pp. 102–109.

https://ens.domains/
https://ens.domains/
https://unstoppabledomains.com/
https://unstoppabledomains.com/
https://doi.org/10.1145/3544216.3544232
https://joinmastodon.org/
https://blueskyweb.xyz/
https://probelab.io/
https://doi.org/10.1145/3326285.3329052
https://filecoin.io/filecoin.pdf
https://web.dev/rail/
https://github.com/protocol/network-measurements/blob/master/results/rfm17-provider-record-liveness.md
https://github.com/protocol/network-measurements/blob/master/results/rfm17-provider-record-liveness.md
https://doi.org/10.1007/978-0-387-98144-4
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://doi.org/10.1145/1851182.1851198
https://www.usenix.org/conference/woot10/crawling-bittorrent-dhts-fun-and-profit
https://www.usenix.org/conference/woot10/crawling-bittorrent-dhts-fun-and-profit
https://doi.org/10.1109/icnp.2006.320218
https://doi.org/10.1145/1146381.1146402

	Introduction
	Background
	The InterPlanetary File System (IPFS)
	Kademlia in IPFS

	Measurements & Motivation
	Design Overview
	Optimistic Provide
	Network Size Estimation
	Calculating Target Key Proximity of Individual Peers
	Calculating Target Key Proximity of a Set of Peers

	Evaluation
	Performance
	Performance Exploration
	Overhead

	Related Work
	Conclusion
	References

